LOADING
 System
 Palette
 Property
Mode  
..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

step(°):
..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

Periodic Table

1

H

2

He


3

Li

4

Be

5

B

6

C

7

N

8

O

9

F

10

Ne


11

Na

12

Mg

13

Al

14

Si

15

P

16

S

17

Cl

18

Ar


19

K

20

Ca

21

Sc

22

Ti

23

V

24

Cr

25

Mn

26

Fe

27

Co

28

Ni

29

Cu

30

Zn

31

Ga

32

Ge

33

As

34

Se

35

Br

36

Kr


37

Rb

38

Sr

39

Y

40

Zr

41

Nb

42

Mo

43

Tc

44

Ru

45

Rh

46

Pd

47

Ag

48

Cd

49

In

50

Sn

51

Sb

52

Te

53

I

54

Xe


55

Cs

56

Ba

72

Hf

73

Ta

74

W

75

Re

76

Os

77

Ir

78

Pt

79

Au

80

Hg

81

Tl

82

Pb

83

Bi

84

Po

85

At

86

Rn


87

Fr

88

Ra

104

Rf

105

Db

106

Sg

107

Bh

108

Hs

109

Mt

110

Ds

111

Rg

112

Cn

113

Uut

114

Fl

115

Uup

116

Lv

117

Uus

118

Uuo


57

La

58

Ce

59

Pr

60

Nd

61

Pm

62

Sm

63

Eu

64

Gd

65

Tb

66

Dy

67

Ho

68

Er

69

Tm

70

Yb

71

Lu


89

Ac

90

Th

91

Pa

92

U

93

Np

94

Pu

95

Am

96

Cm

97

Bk

98

Cf

99

Es

100

Fm

101

Md

102

No

103

Lr


step(°):
Crystallographic Space Group Symmetry Tables

Crystallographic Space Group Symmetry Tables

1 P1

  • Number of Symmetry Operators = 1
  • Space Group Name = P1
  • Crystal System = TRICLINIC
  • Laue Class = -1
  • Point Group = 1
  • Patterson Space Group # = 2
  • Lattice Type = P
  • symmetry= X,Y,Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1
  • 2 P-1

  • Number of Symmetry Operators = 2
  • Space Group Name = P-1
  • Crystal System = TRICLINIC
  • Laue Class = -1
  • Point Group = -1
  • Patterson Space Group # = 2
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1
  • 3 P2

  • Number of Symmetry Operators = 2
  • Space Group Name = P2
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,Y,-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/2
  • 4 P2(1)

  • Number of Symmetry Operators = 2
  • Space Group Name = P2(1)
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,Y+1/2,-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/2
  • 5 C2

  • Number of Symmetry Operators = 4
  • Space Group Name = C2
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2
  • Patterson Space Group # = 12
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 6 Pm

  • Number of Symmetry Operators = 2
  • Space Group Name = Pm
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = m
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= X,-Y,Z
  • asymm= 0<=x<=1 and 0<=y<=1/2 and 0<=z<=1
  • 7 Pc

  • Number of Symmetry Operators = 2
  • Space Group Name = Pc
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = m
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= X,-Y,1/2+Z
  • asymm= 0<=x<=1 and 0<=y<=1/2 and 0<=z<=1
  • 8 Cm

  • Number of Symmetry Operators = 4
  • Space Group Name = Cm
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = m
  • Patterson Space Group # = 12
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= X,-Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • asymm= 0<=x<=1 and 0<=y<=1/4 and 0<=z<=1
  • 9 Cc

  • Number of Symmetry Operators = 4
  • Space Group Name = Cc
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = m
  • Patterson Space Group # = 12
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • asymm= 0<=x<=1 and 0<=y<=1/4 and 0<=z<=1
  • 10 P2/m

  • Number of Symmetry Operators = 4
  • Space Group Name = P2/m
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2/m
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= -X,-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 11 P2(1)/m

  • Number of Symmetry Operators = 4
  • Space Group Name = P2(1)/m
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2/m
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,1/2+Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,1/2-Y,Z
  • asymm= 0<=x<=1 and 0<=y<=1/4 and 0<=z<=1
  • 12 C2/m

  • Number of Symmetry Operators = 8
  • Space Group Name = C2/m
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2/m
  • Patterson Space Group # = 12
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and 0<=z<=1
  • 13 P2/c

  • Number of Symmetry Operators = 4
  • Space Group Name = P2/c
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2/m
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,-Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/2
  • 14 P2(1)/c

  • Number of Symmetry Operators = 4
  • Space Group Name = P2(1)/c
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2/m
  • Patterson Space Group # = 10
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,-Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • asymm= 0<=x<=1 and 0<=y<=1/4 and 0<=z<=1
  • 15 C2/c

  • Number of Symmetry Operators = 8
  • Space Group Name = C2/c
  • Crystal System = MONOCLINIC
  • Laue Class = 2/m
  • Point Group = 2/m
  • Patterson Space Group # = 12
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 16 P222

  • Number of Symmetry Operators = 4
  • Space Group Name = P222
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 17 P222(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = P222(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 18 P2(1)2(1)2

  • Number of Symmetry Operators = 4
  • Space Group Name = P2(1)2(1)2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 19 P2(1)2(1)2(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = P2(1)2(1)2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 20 C222(1)

  • Number of Symmetry Operators = 8
  • Space Group Name = C222(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 21 C222

  • Number of Symmetry Operators = 8
  • Space Group Name = C222
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1
  • 22 F222

  • Number of Symmetry Operators = 16
  • Space Group Name = F222
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 69
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/4 and 0<=z<=1
  • 23 I222

  • Number of Symmetry Operators = 8
  • Space Group Name = I222
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,Y,-Z
  • symmetry= X+1/2,Y+1/2,Z+1/2
  • symmetry= -X+1/2,-Y+1/2,Z+1/2
  • symmetry= X+1/2,-Y+1/2,-Z+1/2
  • symmetry= -X+1/2,Y+1/2,-Z+1/2
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 24 I2(1)2(1)2(1)

  • Number of Symmetry Operators = 8
  • Space Group Name = I2(1)2(1)2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = 222
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= 1/2-X,Y,-Z
  • symmetry= X,-Y,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 25 Pmm2

  • Number of Symmetry Operators = 4
  • Space Group Name = Pmm2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 26 Pmc2(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = Pmc2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 27 Pcc2

  • Number of Symmetry Operators = 4
  • Space Group Name = Pcc2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 28 Pma2

  • Number of Symmetry Operators = 4
  • Space Group Name = Pma2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= 1/2-X,Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1 and 0<=z<=1
  • 29 Pca2(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = Pca2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= 1/2-X,Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1 and 0<=z<=1
  • 30 Pnc2

  • Number of Symmetry Operators = 4
  • Space Group Name = Pnc2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/2
  • 31 Pmn2(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = Pmn2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= -X,Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 32 Pba2

  • Number of Symmetry Operators = 4
  • Space Group Name = Pba2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 33 Pna2(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = Pna2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 34 Pnn2

  • Number of Symmetry Operators = 4
  • Space Group Name = Pnn2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 35 Cmm2

  • Number of Symmetry Operators = 8
  • Space Group Name = Cmm2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1
  • 36 Cmc2(1)

  • Number of Symmetry Operators = 8
  • Space Group Name = Cmc2(1)
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 37 Ccc2

  • Number of Symmetry Operators = 8
  • Space Group Name = Ccc2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1
  • 38 Amm2

  • Number of Symmetry Operators = 8
  • Space Group Name = Amm2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = A
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 39 Abm2

  • Number of Symmetry Operators = 8
  • Space Group Name = Abm2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = A
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,1/2-Y,Z
  • symmetry= -X,1/2+Y,Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and 0<=z<=1
  • 40 Ama2

  • Number of Symmetry Operators = 8
  • Space Group Name = Ama2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = A
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= 1/2-X,Y,Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1
  • 41 Aba2

  • Number of Symmetry Operators = 8
  • Space Group Name = Aba2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 65
  • Lattice Type = A
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 42 Fmm2

  • Number of Symmetry Operators = 16
  • Space Group Name = Fmm2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 69
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/4 and 0<=z<=1
  • 43 Fdd2

  • Number of Symmetry Operators = 16
  • Space Group Name = Fdd2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 69
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/4+X,1/4-Y,1/4+Z
  • symmetry= 1/4-X,1/4+Y,1/4+Z
  • {*!!*}
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= 1/4+X,3/4-Y,3/4+Z
  • symmetry= 1/4-X,3/4+Y,3/4+Z
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 3/4+X,1/4-Y,3/4+Z
  • symmetry= 3/4-X,1/4+Y,3/4+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 3/4+X,3/4-Y,1/4+Z
  • symmetry= 3/4-X,3/4+Y,1/4+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/4 and 0<=z<=1
  • 44 Imm2

  • Number of Symmetry Operators = 8
  • Space Group Name = Imm2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 45 Iba2

  • Number of Symmetry Operators = 8
  • Space Group Name = Iba2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 46 Ima2

  • Number of Symmetry Operators = 8
  • Space Group Name = Ima2
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mm2
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= 1/2-X,Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1 and 0<=z<=1/2
  • 47 Pmmm

  • Number of Symmetry Operators = 8
  • Space Group Name = Pmmm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 48 Pnnn

  • Number of Symmetry Operators = 8
  • Space Group Name = Pnnn
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1
  • 49 Pccm

  • Number of Symmetry Operators = 8
  • Space Group Name = Pccm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 50 Pban

  • Number of Symmetry Operators = 8
  • Space Group Name = Pban
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 51 Pmma

  • Number of Symmetry Operators = 8
  • Space Group Name = Pmma
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= 1/2+X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= 1/2-X,Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1
  • 52 Pnna

  • Number of Symmetry Operators = 8
  • Space Group Name = Pnna
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1 and 0<=y<=1/4 and 0<=z<=1/2
  • 53 Pmna

  • Number of Symmetry Operators = 8
  • Space Group Name = Pmna
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= -X,Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 54 Pcca

  • Number of Symmetry Operators = 8
  • Space Group Name = Pcca
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 55 Pbam

  • Number of Symmetry Operators = 8
  • Space Group Name = Pbam
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 56 Pccn

  • Number of Symmetry Operators = 8
  • Space Group Name = Pccn
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1 and 0<=z<=1/2
  • 57 Pbcm

  • Number of Symmetry Operators = 8
  • Space Group Name = Pbcm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 58 Pnnm

  • Number of Symmetry Operators = 8
  • Space Group Name = Pnnm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 59 Pmmn

  • Number of Symmetry Operators = 8
  • Space Group Name = Pmmn
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,Y+1/2,-Z
  • symmetry= X+1/2,1/2-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= X+1/2,Y+1/2,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 60 Pbcn

  • Number of Symmetry Operators = 8
  • Space Group Name = Pbcn
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 61 Pbca

  • Number of Symmetry Operators = 8
  • Space Group Name = Pbca
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 62 Pnma

  • Number of Symmetry Operators = 8
  • Space Group Name = Pnma
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 47
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X,Y+1/2,-Z
  • symmetry= X+1/2,-Y+1/2,-Z+1/2
  • symmetry= -X,-Y,-Z
  • symmetry= X+1/2,Y,-Z+1/2
  • symmetry= X,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,Z+1/2
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and 0<=z<=1
  • 63 Cmcm

  • Number of Symmetry Operators = 16
  • Space Group Name = Cmcm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,1/2-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 64 Cmca

  • Number of Symmetry Operators = 16
  • Space Group Name = Cmca
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 65 Cmmm

  • Number of Symmetry Operators = 16
  • Space Group Name = Cmmm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 66 Cccm

  • Number of Symmetry Operators = 16
  • Space Group Name = Cccm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 67 Cmma

  • Number of Symmetry Operators = 16
  • Space Group Name = Cmma
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= -X,1/2+Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,1/2+Y,-Z
  • symmetry= X,1/2-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,-Y,Z
  • symmetry= 1/2-X,Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,Y,-Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and 0<=z<=1/2
  • 68 Ccca

  • Number of Symmetry Operators = 16
  • Space Group Name = Ccca
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 65
  • Lattice Type = C
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= -X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2-X,-Y,1/2-Z
  • symmetry= X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 69 Fmmm

  • Number of Symmetry Operators = 32
  • Space Group Name = Fmmm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 69
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= -X,1/2-Y,1/2-Z
  • symmetry= X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2-X,-Y,1/2-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/4 and 0<=z<=1/2
  • 70 Fddd

  • Number of Symmetry Operators = 32
  • Space Group Name = Fddd
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 69
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/4-X,1/4-Y,1/4-Z
  • symmetry= 1/4+X,1/4+Y,1/4-Z
  • symmetry= 1/4+X,1/4-Y,1/4+Z
  • symmetry= 1/4-X,1/4+Y,1/4+Z
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= 1/4-X,3/4-Y,3/4-Z
  • symmetry= 1/4+X,3/4+Y,3/4-Z
  • symmetry= 1/4+X,3/4-Y,3/4+Z
  • symmetry= 1/4-X,3/4+Y,3/4+Z
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 3/4-X,1/4-Y,3/4-Z
  • symmetry= 3/4+X,1/4+Y,3/4-Z
  • symmetry= 3/4+X,1/4-Y,3/4+Z
  • symmetry= 3/4-X,1/4+Y,3/4+Z
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 3/4-X,3/4-Y,1/4-Z
  • symmetry= 3/4+X,3/4+Y,1/4-Z
  • symmetry= 3/4+X,3/4-Y,1/4+Z
  • symmetry= 3/4-X,3/4+Y,1/4+Z
  • asymm= 0<=x<=1/8 and 0<=y<=1/4 and 0<=z<=1
  • 71 Immm

  • Number of Symmetry Operators = 16
  • Space Group Name = Immm
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 72 Ibam

  • Number of Symmetry Operators = 16
  • Space Group Name = Ibam
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 73 Ibca

  • Number of Symmetry Operators = 16
  • Space Group Name = Ibca
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= 1/2-X,Y,-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= X,1/2+Y,-Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= -X,Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1/2
  • 74 Imma

  • Number of Symmetry Operators = 16
  • Space Group Name = Imma
  • Crystal System = ORTHORHOMBIC
  • Laue Class = mmm
  • Point Group = mmm
  • Patterson Space Group # = 71
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= -X,1/2+Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,1/2+Y,-Z
  • symmetry= X,1/2-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/4 and 0<=z<=1
  • 75 P4

  • Number of Symmetry Operators = 4
  • Space Group Name = P4
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 76 P4(1)

  • Number of Symmetry Operators = 4
  • Space Group Name = P4(1)
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -Y,X,1/4+Z
  • symmetry= Y,-X,3/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 77 P4(2)

  • Number of Symmetry Operators = 4
  • Space Group Name = P4(2)
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 78 P4(3)

  • Number of Symmetry Operators = 4
  • Space Group Name = P4(3)
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -Y,X,3/4+Z
  • symmetry= Y,-X,1/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 79 I4

  • Number of Symmetry Operators = 8
  • Space Group Name = I4
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4
  • Patterson Space Group # = 87
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 80 I4(1)

  • Number of Symmetry Operators = 8
  • Space Group Name = I4(1)
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4
  • Patterson Space Group # = 87
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 81 P-4

  • Number of Symmetry Operators = 4
  • Space Group Name = P-4
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = -4
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1
  • 82 I-4

  • Number of Symmetry Operators = 8
  • Space Group Name = I-4
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = -4
  • Patterson Space Group # = 87
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 83 P4/m

  • Number of Symmetry Operators = 8
  • Space Group Name = P4/m
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4/m
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 84 P4(2)/m

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)/m
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4/m
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,1/2-Z
  • symmetry= -Y,X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 85 P4/n

  • Number of Symmetry Operators = 8
  • Space Group Name = P4/n
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4/m
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,Z
  • symmetry= 1/2+Y,1/2-X,Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 86 P4(2)/n

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)/n
  • Crystal System = TETRAGOANL
  • Laue Class = 4/m
  • Point Group = 4/m
  • Patterson Space Group # = 83
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 87 I4/m

  • Number of Symmetry Operators = 16
  • Space Group Name = I4/m
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4/m
  • Patterson Space Group # = 87
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 88 I4(1)/a

  • Number of Symmetry Operators = 16
  • Space Group Name = I4(1)/a
  • Crystal System = TETRAGONAL
  • Laue Class = 4/m
  • Point Group = 4/m
  • Patterson Space Group # = 87
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= -X,1/2-Y,1/4-Z
  • symmetry= 1/2+X,Y,3/4-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • symmetry= 1/2-X,-Y,3/4-Z
  • symmetry= X,1/2+Y,1/4-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= -Y,X,-Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/4 and 0<=z<=1
  • 89 P422

  • Number of Symmetry Operators = 8
  • Space Group Name = P422
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 90 P42(1)2

  • Number of Symmetry Operators = 8
  • Space Group Name = P42(1)2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,Z
  • symmetry= 1/2+Y,1/2-X,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 91 P4(1)22

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(1)22
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -Y,X,1/4+Z
  • symmetry= Y,-X,3/4+Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= Y,X,3/4-Z
  • symmetry= -Y,-X,1/4-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/8
  • 92 P4(1)2(1)2

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(1)2(1)2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,1/2-X,3/4+Z
  • symmetry= 1/2-X,1/2+Y,1/4-Z
  • symmetry= 1/2+X,1/2-Y,3/4-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,1/2-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/8
  • 93 P4(2)22

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)22
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 94 P4(2)2(1)2

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)2(1)2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 95 P4(3)22

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(3)22
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= -Y,X,3/4+Z
  • symmetry= Y,-X,1/4+Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= Y,X,1/4-Z
  • symmetry= -Y,-X,3/4-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/8
  • 96 P4(3)2(1)2

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(3)2(1)2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,3/4+Z
  • symmetry= 1/2+Y,1/2-X,1/4+Z
  • symmetry= 1/2-X,1/2+Y,3/4-Z
  • symmetry= 1/2+X,1/2-Y,1/4-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,1/2-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/8
  • 97 I422

  • Number of Symmetry Operators = 16
  • Space Group Name = I422
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 98 I4(1)22

  • Number of Symmetry Operators = 16
  • Space Group Name = I4(1)22
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 422
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= 1/2-X,Y,3/4-Z
  • symmetry= X,1/2-Y,1/4-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • symmetry= -X,1/2+Y,1/4-Z
  • symmetry= 1/2+X,-Y,3/4-Z
  • symmetry= Y,X,-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/8
  • 99 P4mm

  • Number of Symmetry Operators = 8
  • Space Group Name = P4mm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1 and x<=y
  • 100 P4bm

  • Number of Symmetry Operators = 8
  • Space Group Name = P4bm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1 and y<=1/2-x
  • 101 P4(2)cm

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)cm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1 and x<=y
  • 102 P4(2)nm

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)nm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1 and x<=y
  • 103 P4cc

  • Number of Symmetry Operators = 8
  • Space Group Name = P4cc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 104 P4nc

  • Number of Symmetry Operators = 8
  • Space Group Name = P4nc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 105 P4(2)mc

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)mc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 106 P4(2)bc

  • Number of Symmetry Operators = 8
  • Space Group Name = P4(2)bc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 107 I4mm

  • Number of Symmetry Operators = 16
  • Space Group Name = I4mm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and x<=y
  • 108 I4cm

  • Number of Symmetry Operators = 16
  • Space Group Name = I4cm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=1/2-x
  • 109 I4(1)md

  • Number of Symmetry Operators = 16
  • Space Group Name = I4(1)md
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= -Y,1/2-X,1/4+Z
  • symmetry= 1/2+Y,X,3/4+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2-Y,-X,3/4+Z
  • symmetry= Y,1/2+X,1/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 110 I4(1)cd

  • Number of Symmetry Operators = 16
  • Space Group Name = I4(1)cd
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4mm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= -Y,1/2-X,3/4+Z
  • symmetry= 1/2+Y,X,1/4+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2-Y,-X,1/4+Z
  • symmetry= Y,1/2+X,3/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 111 P-42m

  • Number of Symmetry Operators = 8
  • Space Group Name = P-42m
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1 and x<=y
  • 112 P-42c

  • Number of Symmetry Operators = 8
  • Space Group Name = P-42c
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 113 P-42(1)m

  • Number of Symmetry Operators = 8
  • Space Group Name = P-42(1)m
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1 and y<=1/2-x
  • 114 P-42(1)c

  • Number of Symmetry Operators = 8
  • Space Group Name = P-42(1)c
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 115 P-4m2

  • Number of Symmetry Operators = 8
  • Space Group Name = P-4m2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,-X,-Z
  • {**}
  • symmetry= -Y,X,-Z
  • {**}
  • symmetry= X,-Y,Z
  • {**}
  • symmetry= -X,Y,Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 116 P-4c2

  • Number of Symmetry Operators = 8
  • Space Group Name = P-4c2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 117 P-4b2

  • Number of Symmetry Operators = 8
  • Space Group Name = P-4b2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2+Y,1/2+X,-Z
  • symmetry= 1/2-Y,1/2-X,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2
  • 118 P-4n2

  • Number of Symmetry Operators = 8
  • Space Group Name = P-4n2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4
  • 119 I-4m2

  • Number of Symmetry Operators = 16
  • Space Group Name = I-4m2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 120 I-4c2

  • Number of Symmetry Operators = 16
  • Space Group Name = I-4c2
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= Y,X,1/2-Z
  • {***}
  • symmetry= -Y,-X,1/2-Z
  • symmetry= X+1/2,Y+1/2,Z+1/2
  • symmetry= -X+1/2,-Y+1/2,Z+1/2
  • symmetry= Y+1/2,-X+1/2,-Z+1/2
  • symmetry= -Y+1/2,X+1/2,-Z+1/2
  • symmetry= X+1/2,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,Z
  • symmetry= Y+1/2,X+1/2,-Z
  • {***}
  • symmetry= -Y+1/2,-X+1/2,-Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 121 I-42m

  • Number of Symmetry Operators = 16
  • Space Group Name = I-42m
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and x<=y
  • 122 I-42d

  • Number of Symmetry Operators = 16
  • Space Group Name = I-42d
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = -42m
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2-X,Y,3/4-Z
  • symmetry= 1/2+X,-Y,3/4-Z
  • symmetry= 1/2-Y,-X,3/4+Z
  • symmetry= 1/2+Y,X,3/4+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= -X,1/2+Y,1/4-Z
  • symmetry= X,1/2-Y,1/4-Z
  • symmetry= -Y,1/2-X,1/4+Z
  • symmetry= Y,1/2+X,1/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/8
  • 123 P4/mmm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/mmm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and x<=y
  • 124 P4/mcc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/mcc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 125 P4/nbm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/nbm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= 1/2+Y,1/2-X,-Z
  • symmetry= 1/2-Y,1/2+X,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=1/2-x
  • 126 P4/nnc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/nnc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 127 P4/mbm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/mbm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Y,1/2+X,-Z
  • symmetry= 1/2-Y,1/2-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=1/2-x
  • 128 P4/mnc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/mnc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 129 P4/nmm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/nmm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,Z
  • symmetry= 1/2+Y,1/2-X,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=1/2-x
  • 130 P4/ncc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4/ncc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,Z
  • symmetry= 1/2+Y,1/2-X,Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 131 P4(2)/mmc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/mmc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,1/2-Z
  • symmetry= -Y,X,1/2-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 132 P4(2)/mcm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/mcm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,1/2-Z
  • symmetry= -Y,X,1/2-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and x<=y
  • 133 P4(2)/nbc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/nbc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= 1/2+Y,1/2+X,-Z
  • symmetry= 1/2-Y,1/2-X,-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 134 P4(2)/nnm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/nnm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1 and 0<=z<=1/4 and x<=y and y<=1-x
  • 135 P4(2)/mbc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/mbc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,1/2+Z
  • symmetry= Y,-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,1/2-Z
  • symmetry= -Y,X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 136 P4(2)/mnm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/mnm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X+1/2,Z+1/2
  • symmetry= Y+1/2,1/2-X,Z+1/2
  • symmetry= 1/2-X,Y+1/2,1/2-Z
  • symmetry= X+1/2,1/2-Y,1/2-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y+1/2,1/2-X,1/2-Z
  • symmetry= 1/2-Y,X+1/2,1/2-Z
  • symmetry= X+1/2,1/2-Y,Z+1/2
  • symmetry= 1/2-X,Y+1/2,Z+1/2
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and x<=y
  • 137 P4(2)/nmc

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/nmc
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4
  • 138 P4(2)/ncm

  • Number of Symmetry Operators = 16
  • Space Group Name = P4(2)/ncm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 123
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/4 and 0<=y<=1/2 and 0<=z<=1 and x<=y and y<=1/2-x
  • 139 I4/mmm

  • Number of Symmetry Operators = 32
  • Space Group Name = I4/mmm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4 and x<=y
  • 140 I4/mcm

  • Number of Symmetry Operators = 32
  • Space Group Name = I4/mcm
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -Y,X,Z
  • symmetry= Y,-X,Z
  • symmetry= -X,Y,1/2-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,X,1/2+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Y,1/2+X,-Z
  • symmetry= 1/2-Y,1/2-X,-Z
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2+X,Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4 and y<=1/2-x
  • 141 I4(1)/amd

  • Number of Symmetry Operators = 32
  • Space Group Name = I4(1)/amd
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= 1/2-X,Y,3/4-Z
  • symmetry= X,1/2-Y,1/4-Z
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= -Y,-X,-Z
  • symmetry= -X,1/2-Y,1/4-Z
  • symmetry= 1/2+X,Y,3/4-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= -X,Y,Z
  • symmetry= 1/2-Y,-X,3/4+Z
  • symmetry= Y,1/2+X,1/4+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • symmetry= -X,1/2+Y,1/4-Z
  • symmetry= 1/2+X,-Y,3/4-Z
  • symmetry= Y,X,-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2-X,-Y,3/4-Z
  • symmetry= X,1/2+Y,1/4-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= -Y,1/2-X,1/4+Z
  • symmetry= 1/2+Y,X,3/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/8
  • 142 I4(1)/acd

  • Number of Symmetry Operators = 32
  • Space Group Name = I4(1)/acd
  • Crystal System = TETRAGONAL
  • Laue Class = 4/mmm
  • Point Group = 4/mmm
  • Patterson Space Group # = 139
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= -Y,1/2+X,1/4+Z
  • symmetry= 1/2+Y,-X,3/4+Z
  • symmetry= 1/2-X,Y,1/4-Z
  • symmetry= X,1/2-Y,3/4-Z
  • symmetry= 1/2+Y,1/2+X,-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= -X,1/2-Y,1/4-Z
  • symmetry= 1/2+X,Y,3/4-Z
  • symmetry= Y,-X,-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2-Y,-X,1/4+Z
  • symmetry= Y,1/2+X,3/4+Z
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-Y,X,3/4+Z
  • symmetry= Y,1/2-X,1/4+Z
  • symmetry= -X,1/2+Y,3/4-Z
  • symmetry= 1/2+X,-Y,1/4-Z
  • symmetry= Y,X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,-Z
  • symmetry= 1/2-X,-Y,3/4-Z
  • symmetry= X,1/2+Y,1/4-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= -Y,1/2-X,3/4+Z
  • symmetry= 1/2+Y,X,1/4+Z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/8
  • 143 P3

  • Number of Symmetry Operators = 3
  • Space Group Name = P3
  • Crystal System = TRIGONAL
  • Laue Class = -3
  • Point Group = 3
  • Patterson Space Group # = 147
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 144 P3(1)

  • Number of Symmetry Operators = 3
  • Space Group Name = P3(1)
  • Crystal System = TRIGONAL
  • Laue Class = -3
  • Point Group = 3
  • Patterson Space Group # = 147
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z+1/3
  • symmetry= Y-X,-X,Z+2/3
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/3
  • 145 P3(2)

  • Number of Symmetry Operators = 3
  • Space Group Name = P3(2)
  • Crystal System = TRIGONAL
  • Laue Class = -3
  • Point Group = 3
  • Patterson Space Group # = 147
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z+2/3
  • symmetry= Y-X,-X,Z+1/3
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/3
  • 146 R3

  • Number of Symmetry Operators = 9
  • Space Group Name = R3
  • Crystal System = TRIGONAL
  • Laue Class = -3
  • Point Group = 3
  • Patterson Space Group # = 148
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= X+2/3,Y+1/3,Z+1/3
  • symmetry= -Y+2/3,X-Y+1/3,Z+1/3
  • symmetry= Y-X+2/3,-X+1/3,Z+1/3
  • symmetry= X+1/3,Y+2/3,Z+2/3
  • symmetry= -Y+1/3,X-Y+2/3,Z+2/3
  • symmetry= Y-X+1/3,-X+2/3,Z+2/3
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/3 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 147 P-3

  • Number of Symmetry Operators = 6
  • Space Group Name = P-3
  • Crystal System = TRIGONAL
  • Laue Class = -3
  • Point Group = -3
  • Patterson Space Group # = 147
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 148 R-3

  • Number of Symmetry Operators = 18
  • Space Group Name = R-3
  • Crystal System = TRIGONAL
  • Laue Class = -3
  • Point Group = -3
  • Patterson Space Group # = 148
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= 2/3+X,1/3+Y,1/3+Z
  • symmetry= 2/3-Y,1/3+X-Y,1/3+Z
  • symmetry= 2/3+Y-X,1/3-X,1/3+Z
  • symmetry= 2/3-X,1/3-Y,1/3-Z
  • symmetry= 2/3+Y,1/3+Y-X,1/3-Z
  • symmetry= 2/3+X-Y,1/3+X,1/3-Z
  • symmetry= 1/3+X,2/3+Y,2/3+Z
  • symmetry= 1/3-Y,2/3+X-Y,2/3+Z
  • symmetry= 1/3+Y-X,2/3-X,2/3+Z
  • symmetry= 1/3-X,2/3-Y,2/3-Z
  • symmetry= 1/3+Y,2/3+Y-X,2/3-Z
  • symmetry= 1/3+X-Y,2/3+X,2/3-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/6 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 149 P312

  • Number of Symmetry Operators = 6
  • Space Group Name = P312
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 150 P321

  • Number of Symmetry Operators = 6
  • Space Group Name = P321
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 151 P3(1)12

  • Number of Symmetry Operators = 6
  • Space Group Name = P3(1)12
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,1/3+Z
  • symmetry= Y-X,-X,2/3+Z
  • symmetry= -Y,-X,2/3-Z
  • symmetry= Y-X,Y,1/3-Z
  • symmetry= X,X-Y,-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6
  • 152 P3(1)21

  • Number of Symmetry Operators = 6
  • Space Group Name = P3(1)21
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z+1/3
  • symmetry= Y-X,-X,Z+2/3
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,2/3-Z
  • symmetry= -X,Y-X,1/3-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6
  • 153 P3(2)12

  • Number of Symmetry Operators = 6
  • Space Group Name = P3(2)12
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,2/3+Z
  • symmetry= Y-X,-X,1/3+Z
  • symmetry= -Y,-X,1/3-Z
  • symmetry= Y-X,Y,2/3-Z
  • symmetry= X,X-Y,-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6
  • 154 P3(2)21

  • Number of Symmetry Operators = 6
  • Space Group Name = P3(2)21
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z+2/3
  • symmetry= Y-X,-X,Z+1/3
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,1/3-Z
  • symmetry= -X,Y-X,2/3-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6
  • 155 R32

  • Number of Symmetry Operators = 18
  • Space Group Name = R32
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 32
  • Patterson Space Group # = 166
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= 2/3+X,1/3+Y,1/3+Z
  • symmetry= 2/3-Y,1/3+X-Y,1/3+Z
  • symmetry= 2/3+Y-X,1/3-X,1/3+Z
  • symmetry= 2/3+Y,1/3+X,1/3-Z
  • symmetry= 2/3+X-Y,1/3-Y,1/3-Z
  • symmetry= 2/3-X,1/3+Y-X,1/3-Z
  • symmetry= 1/3+X,2/3+Y,2/3+Z
  • symmetry= 1/3-Y,2/3+X-Y,2/3+Z
  • symmetry= 1/3+Y-X,2/3-X,2/3+Z
  • symmetry= 1/3+Y,2/3+X,2/3-Z
  • symmetry= 1/3+X-Y,2/3-Y,2/3-Z
  • symmetry= 1/3-X,2/3+Y-X,2/3-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/6 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 156 P3m1

  • Number of Symmetry Operators = 6
  • Space Group Name = P3m1
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 3m
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1 and x<=2 y and y<=min(1-x,2 x)
  • 157 P31m

  • Number of Symmetry Operators = 6
  • Space Group Name = P31m
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 3m
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1 and x<=(y+1)/2 and y<=min(1-x,x)
  • 158 P3c1

  • Number of Symmetry Operators = 6
  • Space Group Name = P3c1
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 3m
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 159 P31c

  • Number of Symmetry Operators = 6
  • Space Group Name = P31c
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 3m
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 160 R3m

  • Number of Symmetry Operators = 18
  • Space Group Name = R3m
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 3m
  • Patterson Space Group # = 166
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= 2/3+X,1/3+Y,1/3+Z
  • symmetry= 2/3-Y,1/3+X-Y,1/3+Z
  • symmetry= 2/3+Y-X,1/3-X,1/3+Z
  • symmetry= 2/3-Y,1/3-X,1/3+Z
  • symmetry= 2/3+Y-X,1/3+Y,1/3+Z
  • symmetry= 2/3+X,1/3+X-Y,1/3+Z
  • symmetry= 1/3+X,2/3+Y,2/3+Z
  • symmetry= 1/3-Y,2/3+X-Y,2/3+Z
  • {***}
  • symmetry= 1/3+Y-X,2/3-X,2/3+Z
  • symmetry= 1/3-Y,2/3-X,2/3+Z
  • symmetry= 1/3+Y-X,2/3+Y,2/3+Z
  • symmetry= 1/3+X,2/3+X-Y,2/3+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/3 and x<=2 y and y<=min(1-x,2 x)
  • 161 R3c

  • Number of Symmetry Operators = 18
  • Space Group Name = R3c
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = 3m
  • Patterson Space Group # = 166
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= 2/3+X,1/3+Y,1/3+Z
  • symmetry= 2/3-Y,1/3+X-Y,1/3+Z
  • symmetry= 2/3+Y-X,1/3-X,1/3+Z
  • symmetry= 2/3-Y,1/3-X,5/6+Z
  • symmetry= 2/3+Y-X,1/3+Y,5/6+Z
  • symmetry= 2/3+X,1/3+X-Y,5/6+Z
  • symmetry= 1/3+X,2/3+Y,2/3+Z
  • symmetry= 1/3-Y,2/3+X-Y,2/3+Z
  • symmetry= 1/3+Y-X,2/3-X,2/3+Z
  • symmetry= 1/3-Y,2/3-X,1/6+Z
  • symmetry= 1/3+Y-X,2/3+Y,1/6+Z
  • symmetry= 1/3+X,2/3+X-Y,1/6+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/6 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 162 P-31m

  • Number of Symmetry Operators = 12
  • Space Group Name = P-31m
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = -3m
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,x)
  • 163 P-31c

  • Number of Symmetry Operators = 12
  • Space Group Name = P-31c
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = -3m
  • Patterson Space Group # = 162
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= Y-X,Y,1/2-Z
  • symmetry= X,X-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 164 P-3m1

  • Number of Symmetry Operators = 12
  • Space Group Name = P-3m1
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = -3m
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/3 and 0<=z<=1 and x<=(1+y)/2 and y<=x/2
  • 165 P-3c1

  • Number of Symmetry Operators = 12
  • Space Group Name = P-3c1
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = -3m
  • Patterson Space Group # = 164
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,1/2-Z
  • symmetry= X-Y,-Y,1/2-Z
  • symmetry= -X,Y-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 166 R-3m

  • Number of Symmetry Operators = 36
  • Space Group Name = R-3m
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = -3m
  • Patterson Space Group # = 166
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= 2/3+X,1/3+Y,1/3+Z
  • symmetry= 2/3-Y,1/3+X-Y,1/3+Z
  • symmetry= 2/3+Y-X,1/3-X,1/3+Z
  • symmetry= 2/3+Y,1/3+X,1/3-Z
  • symmetry= 2/3+X-Y,1/3-Y,1/3-Z
  • symmetry= 2/3-X,1/3+Y-X,1/3-Z
  • symmetry= 2/3-X,1/3-Y,1/3-Z
  • symmetry= 2/3+Y,1/3+Y-X,1/3-Z
  • symmetry= 2/3+X-Y,1/3+X,1/3-Z
  • symmetry= 2/3-Y,1/3-X,1/3+Z
  • symmetry= 2/3+Y-X,1/3+Y,1/3+Z
  • symmetry= 2/3+X,1/3+X-Y,1/3+Z
  • symmetry= 1/3+X,2/3+Y,2/3+Z
  • symmetry= 1/3-Y,2/3+X-Y,2/3+Z
  • symmetry= 1/3+Y-X,2/3-X,2/3+Z
  • {***}
  • symmetry= 1/3+Y,2/3+X,2/3-Z
  • symmetry= 1/3+X-Y,2/3-Y,2/3-Z
  • symmetry= 1/3-X,2/3+Y-X,2/3-Z
  • symmetry= 1/3-X,2/3-Y,2/3-Z
  • symmetry= 1/3+Y,2/3+Y-X,2/3-Z
  • symmetry= 1/3X-Y,2/3+X,2/3-Z
  • symmetry= 1/3-Y,2/3-X,2/3+Z
  • symmetry= 1/3+Y-X,2/3+Y,2/3+Z
  • symmetry= 1/3+X,2/3+X-Y,2/3+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/6 and x<=2 y and y<=min(1-x,2 x)
  • 167 R-3c

  • Number of Symmetry Operators = 36
  • Space Group Name = R-3c
  • Crystal System = TRIGONAL
  • Laue Class = -3m
  • Point Group = -3m
  • Patterson Space Group # = 166
  • Lattice Type = R
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= Y,X,1/2-Z
  • symmetry= X-Y,-Y,1/2-Z
  • symmetry= -X,Y-X,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= 2/3+X,1/3+Y,1/3+Z
  • symmetry= 2/3-Y,1/3+X-Y,1/3+Z
  • symmetry= 2/3+Y-X,1/3-X,1/3+Z
  • symmetry= 2/3+Y,1/3+X,5/6-Z
  • symmetry= 2/3+X-Y,1/3-Y,5/6-Z
  • symmetry= 2/3-X,1/3+Y-X,5/6-Z
  • symmetry= 2/3-X,1/3-Y,1/3-Z
  • symmetry= 2/3+Y,1/3+Y-X,1/3-Z
  • symmetry= 2/3+X-Y,1/3+X,1/3-Z
  • symmetry= 2/3-Y,1/3-X,5/6+Z
  • symmetry= 2/3+Y-X,1/3+Y,5/6+Z
  • symmetry= 2/3+X,1/3+X-Y,5/6+Z
  • symmetry= 1/3+X,2/3+Y,2/3+Z
  • symmetry= 1/3-Y,2/3+X-Y,2/3+Z
  • symmetry= 1/3+Y-X,2/3-X,2/3+Z
  • symmetry= 1/3+Y,2/3+X,1/6-Z
  • symmetry= 1/3+X-Y,2/3-Y,1/6-Z
  • symmetry= 1/3-X,2/3+Y-X,1/6-Z
  • symmetry= 1/3-X,2/3-Y,2/3-Z
  • symmetry= 1/3+Y,2/3+Y-X,2/3-Z
  • symmetry= 1/3+X-Y,2/3+X,2/3-Z
  • symmetry= 1/3-Y,2/3-X,1/6+Z
  • symmetry= 1/3+Y-X,2/3+Y,1/6+Z
  • symmetry= 1/3+X,2/3+X-Y,1/6+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/12 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 168 P6

  • Number of Symmetry Operators = 6
  • Space Group Name = P6
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1 and x<=(1+y)/2 and y<=min(1-x,x)
  • 169 P6(1)

  • Number of Symmetry Operators = 6
  • Space Group Name = P6(1)
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z+1/3
  • symmetry= Y-X,-X,Z+2/3
  • symmetry= -X,-Y,Z+1/2
  • symmetry= Y,Y-X,Z+5/6
  • symmetry= X-Y,X,Z+1/6
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6
  • 170 P6(5)

  • Number of Symmetry Operators = 6
  • Space Group Name = P6(5)
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z+2/3
  • symmetry= Y-X,-X,Z+1/3
  • symmetry= -X,-Y,Z+1/2
  • symmetry= Y,Y-X,Z+1/6
  • symmetry= X-Y,X,Z+5/6
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6
  • 171 P6(2)

  • Number of Symmetry Operators = 6
  • Space Group Name = P6(2)
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,2/3+Z
  • symmetry= Y-X,-X,1/3+Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,2/3+Z
  • symmetry= X-Y,X,1/3+Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/3 and y<=x
  • 172 P6(4)

  • Number of Symmetry Operators = 6
  • Space Group Name = P6(4)
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,1/3+Z
  • symmetry= Y-X,-X,2/3+Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,1/3+Z
  • symmetry= X-Y,X,2/3+Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/3 and y<=x
  • 173 P6(3)

  • Number of Symmetry Operators = 6
  • Space Group Name = P6(3)
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 174 P-6

  • Number of Symmetry Operators = 6
  • Space Group Name = P-6
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = -6
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= X,Y,-Z
  • symmetry= -Y,X-Y,-Z
  • symmetry= Y-X,-X,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 175 P6/m

  • Number of Symmetry Operators = 12
  • Space Group Name = P6/m
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6/m
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= X,Y,-Z
  • symmetry= -Y,X-Y,-Z
  • symmetry= Y-X,-X,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,x)
  • 176 P6(3)/m

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(3)/m
  • Crystal System = HEXAGONAL
  • Laue Class = 6/m
  • Point Group = 6/m
  • Patterson Space Group # = 175
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= X,Y,1/2-Z
  • symmetry= -Y,X-Y,1/2-Z
  • symmetry= Y-X,-X,1/2-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 177 P622

  • Number of Symmetry Operators = 12
  • Space Group Name = P622
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 622
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,x)
  • 178 P6(1)22

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(1)22
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 622
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,1/3+Z
  • symmetry= Y-X,-X,2/3+Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,5/6+Z
  • symmetry= X-Y,X,1/6+Z
  • symmetry= Y,X,1/3-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,2/3-Z
  • symmetry= -Y,-X,5/6-Z
  • symmetry= Y-X,Y,1/2-Z
  • symmetry= X,X-Y,1/6-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/12
  • 179 P6(5)22

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(5)22
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 622
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,2/3+Z
  • symmetry= Y-X,-X,1/3+Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/6+Z
  • symmetry= X-Y,X,5/6+Z
  • symmetry= Y,X,2/3-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,1/3-Z
  • symmetry= -Y,-X,1/6-Z
  • symmetry= Y-X,Y,1/2-Z
  • symmetry= X,X-Y,5/6-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/12
  • 180 P6(2)22

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(2)22
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 622
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,2/3+Z
  • symmetry= Y-X,-X,1/3+Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,2/3+Z
  • symmetry= X-Y,X,1/3+Z
  • symmetry= Y,X,2/3-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,1/3-Z
  • symmetry= -Y,-X,2/3-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,1/3-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6 and y<=x
  • 181 P6(4)22

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(4)22
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 622
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,1/3+Z
  • symmetry= Y-X,-X,2/3+Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,1/3+Z
  • symmetry= X-Y,X,2/3+Z
  • symmetry= Y,X,1/3-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,2/3-Z
  • symmetry= -Y,-X,1/3-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,2/3-Z
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/6 and y<=x
  • 182 P6(3)22

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(3)22
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 622
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= Y-X,Y,1/2-Z
  • symmetry= X,X-Y,1/2-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 183 P6mm

  • Number of Symmetry Operators = 12
  • Space Group Name = P6mm
  • Crystal System = HEXAGOANL
  • Laue Class = 6/mmm
  • Point Group = 6mm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/3 and 0<=z<=1 and x<=(1+y)/2 and y<=x/2
  • 184 P6cc

  • Number of Symmetry Operators = 12
  • Space Group Name = P6cc
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6mm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,x)
  • 185 P6(3)cm

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(3)cm
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6mm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,x)
  • 186 P6(3)mc

  • Number of Symmetry Operators = 12
  • Space Group Name = P6(3)mc
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6mm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/3 and 0<=z<=1 and x<=(1+y)/2 and y<=x/2
  • 187 P-6m2

  • Number of Symmetry Operators = 12
  • Space Group Name = P-6m2
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = -62m
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= X,Y,-Z
  • symmetry= -Y,X-Y,-Z
  • symmetry= Y-X,-X,-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/2 and x<=2 y and y<=min(1-x,2 x)
  • 188 P-6c2

  • Number of Symmetry Operators = 12
  • Space Group Name = P-6c2
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = -62m
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= X,Y,1/2-Z
  • symmetry= -Y,X-Y,1/2-Z
  • symmetry= Y-X,-X,1/2-Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 189 P-62m

  • Number of Symmetry Operators = 12
  • Space Group Name = P-62m
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = -62m
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= X,Y,-Z
  • symmetry= -Y,X-Y,-Z
  • symmetry= Y-X,-X,-Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/2 and x<=(1+y)/2 and y<=min(1-x,x)
  • 190 P-62c

  • Number of Symmetry Operators = 12
  • Space Group Name = P-62c
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = -62m
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= X,Y,1/2-Z
  • symmetry= -Y,X-Y,1/2-Z
  • symmetry= Y-X,-X,1/2-Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,(1+x)/2)
  • 191 P6/mmm

  • Number of Symmetry Operators = 24
  • Space Group Name = P6/mmm
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6/mmm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y-X,-X,-Z
  • symmetry= -Y,X-Y,-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/3 and 0<=z<=1/2 and x<=(1+y)/2 and y<=x/2
  • 192 P6/mcc

  • Number of Symmetry Operators = 24
  • Space Group Name = P6/mcc
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6/mmm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,Z
  • symmetry= Y,Y-X,Z
  • symmetry= X-Y,X,Z
  • symmetry= Y,X,1/2-Z
  • symmetry= X-Y,-Y,1/2-Z
  • symmetry= -X,Y-X,1/2-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= Y-X,Y,1/2-Z
  • symmetry= X,X-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= X,Y,-Z
  • symmetry= Y-X,-X,-Z
  • symmetry= -Y,X-Y,-Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,x)
  • 193 P6(3)/mcm

  • Number of Symmetry Operators = 24
  • Space Group Name = P6(3)/mcm
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6/mmm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • symmetry= Y,X,1/2-Z
  • symmetry= X-Y,-Y,1/2-Z
  • symmetry= -X,Y-X,1/2-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y-X,Y,-Z
  • symmetry= X,X-Y,-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= X,Y,1/2-Z
  • symmetry= Y-X,-X,1/2-Z
  • symmetry= -Y,X-Y,1/2-Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y-X,Y,1/2+Z
  • symmetry= X,X-Y,1/2+Z
  • symmetry= Y,X,Z
  • symmetry= X-Y,-Y,Z
  • symmetry= -X,Y-X,Z
  • asymm= 0<=x<=2/3 and 0<=y<=1/2 and 0<=z<=1/4 and x<=(1+y)/2 and y<=min(1-x,x)
  • 194 P6(3)/mmc

  • Number of Symmetry Operators = 24
  • Space Group Name = P6(3)/mmc
  • Crystal System = HEXAGONAL
  • Laue Class = 6/mmm
  • Point Group = 6/mmm
  • Patterson Space Group # = 191
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -Y,X-Y,Z
  • symmetry= Y-X,-X,Z
  • symmetry= -X,-Y,1/2+Z
  • symmetry= Y,Y-X,1/2+Z
  • symmetry= X-Y,X,1/2+Z
  • symmetry= Y,X,-Z
  • symmetry= X-Y,-Y,-Z
  • symmetry= -X,Y-X,-Z
  • symmetry= -Y,-X,1/2-Z
  • symmetry= Y-X,Y,1/2-Z
  • symmetry= X,X-Y,1/2-Z
  • symmetry= -X,-Y,-Z
  • symmetry= Y,Y-X,-Z
  • symmetry= X-Y,X,-Z
  • symmetry= X,Y,1/2-Z
  • symmetry= Y-X,-X,1/2-Z
  • symmetry= -Y,X-Y,1/2-Z
  • symmetry= -Y,-X,Z
  • symmetry= Y-X,Y,Z
  • symmetry= X,X-Y,Z
  • symmetry= Y,X,1/2+Z
  • symmetry= X-Y,-Y,1/2+Z
  • symmetry= -X,Y-X,1/2+Z
  • asymm= 0<=x<=2/3 and 0<=y<=2/3 and 0<=z<=1/4 and x<=2 y and y<=min(1-x,2 x)
  • 195 P23

  • Number of Symmetry Operators = 12
  • Space Group Name = P23
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = 23
  • Patterson Space Group # = 200
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • asymm= 0<=x<=1 and 0<=y<=1 and 0<=z<=1/2 and y<=1-x and z<=min(x,y)
  • 196 F23

  • Number of Symmetry Operators = 48
  • Space Group Name = F23
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = 23
  • Patterson Space Group # = 202
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2+Z,X,1/2+Y
  • symmetry= 1/2+Z,-X,1/2-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= 1/2-Z,X,1/2-Y
  • symmetry= 1/2+Y,Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2-X
  • symmetry= 1/2+Y,-Z,1/2-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Z,1/2+X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,1/2-X,Y
  • symmetry= 1/2-Z,1/2+X,-Y
  • symmetry= 1/2+Y,1/2+Z,X
  • symmetry= 1/2-Y,1/2+Z,-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,1/2-Z,X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and -1/4<=z<=1/4 and y<=x and max(x-1/2,-y)<=z<=min(1/2-x,y)
  • 197 I23

  • Number of Symmetry Operators = 24
  • Space Group Name = I23
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = 23
  • Patterson Space Group # = 204
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2-X,1/2+Y
  • symmetry= 1/2-Z,1/2+X,1/2-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2-X
  • symmetry= 1/2-Y,1/2-Z,1/2+X
  • asymm= 0<=x<=1 and 0<=y<=1/2 and 0<=z<=1/2 and y<=min(x,1-x) and z<=y
  • 198 P2(1)3

  • Number of Symmetry Operators = 12
  • Space Group Name = P2(1)3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = 23
  • Patterson Space Group # = 200
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and -1/2<=z<=1/2 and max(x-1/2,-y)<=z<=min(x,y)
  • 199 I2(1)3

  • Number of Symmetry Operators = 24
  • Space Group Name = I2(1)3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = 23
  • Patterson Space Group # = 204
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= 1/2-X,Y,-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= Z,-X,1/2-Y
  • symmetry= -Z,1/2-X,Y
  • symmetry= 1/2-Z,X,-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,Z,-X
  • symmetry= Y,-Z,1/2-X
  • symmetry= -Y,1/2-Z,X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and z<=min(x,y)
  • 200 Pm-3

  • Number of Symmetry Operators = 24
  • Space Group Name = Pm-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 200
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and z<=min(x,y)
  • 201 Pn-3

  • Number of Symmetry Operators = 24
  • Space Group Name = Pn-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 200
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2+X,1/2-Y
  • symmetry= 1/2+Z,1/2-X,1/2+Y
  • symmetry= 1/2-Y,1/2-Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2+X
  • symmetry= 1/2+Y,1/2+Z,1/2-X
  • asymm= 0<=x<=1 and 0<=y<=1/2 and 0<=z<=1/2 and y<=min(x,1-x) and z<=y
  • 202 Fm-3

  • Number of Symmetry Operators = 96
  • Space Group Name = Fm-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 202
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= -X,1/2-Y,1/2-Z
  • symmetry= X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2+Z
  • symmetry= -Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2+X,1/2+Y
  • symmetry= Z,1/2+X,1/2-Y
  • symmetry= Z,1/2-X,1/2+Y
  • symmetry= -Y,1/2-Z,1/2-X
  • symmetry= Y,1/2-Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2+X
  • symmetry= Y,1/2+Z,1/2-X
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2+Z,X,1/2+Y
  • symmetry= 1/2+Z,-X,1/2-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= 1/2-Z,X,1/2-Y
  • symmetry= 1/2+Y,Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2-X
  • symmetry= 1/2+Y,-Z,1/2-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/2-X,-Y,1/2-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2+Z
  • symmetry= 1/2-Z,-X,1/2-Y
  • symmetry= 1/2-Z,X,1/2+Y
  • symmetry= 1/2+Z,X,1/2-Y
  • symmetry= 1/2+Z,-X,1/2+Y
  • symmetry= 1/2-Y,-Z,1/2-X
  • symmetry= 1/2+Y,-Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2+X
  • symmetry= 1/2+Y,Z,1/2-X
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Z,1/2+X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,1/2-X,Y
  • symmetry= 1/2-Z,1/2+X,-Y
  • symmetry= 1/2+Y,1/2+Z,X
  • symmetry= 1/2-Y,1/2+Z,-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,1/2-Z,X
  • symmetry= 1/2-X,1/2-Y,-Z
  • symmetry= 1/2+X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= 1/2-Z,1/2-X,-Y
  • symmetry= 1/2-Z,1/2+X,Y
  • symmetry= 1/2+Z,1/2+X,-Y
  • symmetry= 1/2+Z,1/2-X,Y
  • symmetry= 1/2-Y,1/2-Z,-X
  • symmetry= 1/2+Y,1/2-Z,X
  • symmetry= 1/2-Y,1/2+Z,X
  • symmetry= 1/2+Y,1/2+Z,-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4 and y<=x and z<=min(1/2-x,y)
  • 203 Fd-3

  • Number of Symmetry Operators = 96
  • Space Group Name = Fd-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 202
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/4-X,1/4-Y,1/4-Z
  • symmetry= 1/4+X,1/4+Y,1/4-Z
  • symmetry= 1/4+X,1/4-Y,1/4+Z
  • symmetry= 1/4-X,1/4+Y,1/4+Z
  • symmetry= 1/4-Z,1/4-X,1/4-Y
  • symmetry= 1/4-Z,1/4+X,1/4+Y
  • symmetry= 1/4+Z,1/4+X,1/4-Y
  • symmetry= 1/4+Z,1/4-X,1/4+Y
  • symmetry= 1/4-Y,1/4-Z,1/4-X
  • symmetry= 1/4+Y,1/4-Z,1/4+X
  • symmetry= 1/4-Y,1/4+Z,1/4+X
  • symmetry= 1/4+Y,1/4+Z,1/4-X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= 1/4-X,3/4-Y,3/4-Z
  • symmetry= 1/4+X,3/4+Y,3/4-Z
  • symmetry= 1/4+X,3/4-Y,3/4+Z
  • symmetry= 1/4-X,3/4+Y,3/4+Z
  • symmetry= 1/4-Z,3/4-X,3/4-Y
  • symmetry= 1/4-Z,3/4+X,3/4+Y
  • symmetry= 1/4+Z,3/4+X,3/4-Y
  • symmetry= 1/4+Z,3/4-X,3/4+Y
  • symmetry= 1/4-Y,3/4-Z,3/4-X
  • symmetry= 1/4+Y,3/4-Z,3/4+X
  • symmetry= 1/4-Y,3/4+Z,3/4+X
  • symmetry= 1/4+Y,3/4+Z,3/4-X
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2+Z,X,1/2+Y
  • symmetry= 1/2+Z,-X,1/2-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= 1/2-Z,X,1/2-Y
  • symmetry= 1/2+Y,Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2-X
  • symmetry= 1/2+Y,-Z,1/2-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 3/4-X,1/4-Y,3/4-Z
  • symmetry= 3/4+X,1/4+Y,3/4-Z
  • symmetry= 3/4+X,1/4-Y,3/4+Z
  • symmetry= 3/4-X,1/4+Y,3/4+Z
  • symmetry= 3/4-Z,1/4-X,3/4-Y
  • symmetry= 3/4-Z,1/4+X,3/4+Y
  • symmetry= 3/4+Z,1/4+X,3/4-Y
  • symmetry= 3/4+Z,1/4-X,3/4+Y
  • symmetry= 3/4-Y,1/4-Z,3/4-X
  • symmetry= 3/4+Y,1/4-Z,3/4+X
  • symmetry= 3/4-Y,1/4+Z,3/4+X
  • symmetry= 3/4+Y,1/4+Z,3/4-X
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Z,1/2+X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,1/2-X,Y
  • symmetry= 1/2-Z,1/2+X,-Y
  • symmetry= 1/2+Y,1/2+Z,X
  • symmetry= 1/2-Y,1/2+Z,-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,1/2-Z,X
  • symmetry= 3/4-X,3/4-Y,1/4-Z
  • symmetry= 3/4+X,3/4+Y,1/4-Z
  • symmetry= 3/4+X,3/4-Y,Z+1/4
  • symmetry= 3/4-X,3/4+Y,Z+1/4
  • symmetry= 3/4-Z,3/4-X,1/4-Y
  • symmetry= 3/4-Z,3/4+X,1/4+Y
  • symmetry= 3/4+Z,3/4+X,1/4-Y
  • symmetry= 3/4+Z,3/4-X,1/4+Y
  • symmetry= 3/4-Y,3/4-Z,1/4-X
  • symmetry= 3/4+Y,3/4-Z,1/4+X
  • symmetry= 3/4-Y,3/4+Z,1/4+X
  • symmetry= 3/4+Y,3/4+Z,1/4-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and -1/4<=z<=1/4 and y<=min(x,1/2-x) and -y<=z<=y
  • 204 Im-3

  • Number of Symmetry Operators = 48
  • Space Group Name = Im-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 204
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2-X,1/2+Y
  • symmetry= 1/2-Z,1/2+X,1/2-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2-X
  • symmetry= 1/2-Y,1/2-Z,1/2+X
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2+X,1/2-Y
  • symmetry= 1/2+Z,1/2-X,1/2+Y
  • symmetry= 1/2-Y,1/2-Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2+X
  • symmetry= 1/2+Y,1/2+Z,1/2-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=x and z<=y
  • 205 Pa-3

  • Number of Symmetry Operators = 24
  • Space Group Name = Pa-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 200
  • Lattice Type = P
  • symmetry= x,y,z
  • symmetry= 1/2+z,x,1/2-y
  • symmetry= z,1/2-x,1/2+y
  • symmetry= 1/2-z,1/2+x,y
  • symmetry= -z,-x,-y
  • symmetry= 1/2+y,1/2-z,-x
  • symmetry= 1/2-y,-z,1/2+x
  • symmetry= -y,1/2+z,1/2-x
  • symmetry= y,z,x
  • symmetry= x,1/2-y,1/2+z
  • symmetry= 1/2-x,1/2+y,z
  • symmetry= 1/2+x,y,1/2-z
  • symmetry= -x,-y,-z
  • symmetry= 1/2-z,-x,1/2+y
  • symmetry= -z,1/2+x,1/2-y
  • symmetry= 1/2+z,1/2-x,-y
  • symmetry= z,x,y
  • symmetry= 1/2-y,1/2+z,x
  • symmetry= 1/2+y,z,1/2-x
  • symmetry= y,1/2-z,1/2+x
  • symmetry= -y,-z,-x
  • symmetry= -x,1/2+y,1/2-z
  • symmetry= 1/2+x,1/2-y,-z
  • symmetry= 1/2-x,-y,1/2+z
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and z<=min(x,y)
  • 206 Ia-3

  • Number of Symmetry Operators = 48
  • Space Group Name = Ia-3
  • Crystal System = CUBIC
  • Laue Class = m-3
  • Point Group = m-3
  • Patterson Space Group # = 204
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= -X,-Y,-Z
  • symmetry= 1/2+X,Y,1/2-Z
  • symmetry= X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= 1/2-Z,1/2+X,Y
  • symmetry= 1/2+Z,X,1/2-Y
  • symmetry= Z,1/2-X,1/2+Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,1/2-Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,X
  • symmetry= 1/2+Y,Z,1/2-X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= 1/2-X,+Y,-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= Z,-X,1/2-Y
  • symmetry= -Z,1/2-X,Y
  • symmetry= 1/2-Z,X,-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,Z,-X
  • symmetry= Y,-Z,1/2-X
  • symmetry= -Y,1/2-Z,X
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= X,1/2+Y,-Z
  • symmetry= 1/2+X,-Y,Z
  • symmetry= -X,Y,1/2+Z
  • symmetry= 1/2-Z,1/2-X,1/2-Y
  • symmetry= -Z,X,1/2+Y
  • symmetry= Z,1/2+X,-Y
  • symmetry= 1/2+Z,-X,Y
  • symmetry= 1/2-Y,1/2-Z,1/2-X
  • symmetry= 1/2+Y,-Z,X
  • symmetry= -Y,Z,1/2+X
  • symmetry= Y,1/2+Z,-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4 and z<=min(x,1/2-x,1/2-y)
  • 207 P432

  • Number of Symmetry Operators = 24
  • Space Group Name = P432
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • asymm= 0<=x<=1 and 0<=y<=1/2 and 0<=z<=1/2 and y<=min(x,1-x) and z<=y
  • 208 P4(2)32

  • Number of Symmetry Operators = 24
  • Space Group Name = P4(2)32
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2-Z,1/2-Y
  • symmetry= 1/2+X,1/2-Z,1/2+Y
  • symmetry= 1/2+Z,1/2+Y,1/2-X
  • symmetry= 1/2+Z,1/2-Y,1/2+X
  • symmetry= 1/2-Z,1/2+Y,1/2+X
  • symmetry= 1/2-Z,1/2-Y,1/2-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and -1/4<=z<=1/4 and max(-x,x-1/2,-y,y-1/2)<=z<=min(x,1/2-x,y,1/2-y)
  • 209 F432

  • Number of Symmetry Operators = 96
  • Space Group Name = F432
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 225
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= Y,1/2+X,1/2-Z
  • symmetry= -Y,1/2-X,1/2-Z
  • symmetry= Y,1/2-X,1/2+Z
  • symmetry= -Y,1/2+X,1/2+Z
  • symmetry= X,1/2+Z,1/2-Y
  • symmetry= -X,1/2+Z,1/2+Y
  • symmetry= -X,1/2-Z,1/2-Y
  • symmetry= X,1/2-Z,1/2+Y
  • symmetry= Z,1/2+Y,1/2-X
  • symmetry= Z,1/2-Y,1/2+X
  • symmetry= -Z,1/2+Y,1/2+X
  • symmetry= -Z,1/2-Y,1/2-X
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2+Z,X,1/2+Y
  • symmetry= 1/2+Z,-X,1/2-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= 1/2-Z,X,1/2-Y
  • symmetry= 1/2+Y,Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2-X
  • symmetry= 1/2+Y,-Z,1/2-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/2+Y,X,1/2-Z
  • symmetry= 1/2-Y,-X,1/2-Z
  • symmetry= 1/2+Y,-X,1/2+Z
  • symmetry= 1/2-Y,X,1/2+Z
  • symmetry= 1/2+X,Z,1/2-Y
  • symmetry= 1/2-X,Z,1/2+Y
  • symmetry= 1/2-X,-Z,1/2-Y
  • symmetry= 1/2+X,-Z,1/2+Y
  • symmetry= 1/2+Z,Y,1/2-X
  • symmetry= 1/2+Z,-Y,1/2+X
  • symmetry= 1/2-Z,Y,1/2+X
  • symmetry= 1/2-Z,-Y,1/2-X
  • {****}
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Z,1/2+X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,1/2-X,Y
  • symmetry= 1/2-Z,1/2+X,-Y
  • symmetry= 1/2+Y,1/2+Z,X
  • symmetry= 1/2-Y,1/2+Z,-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,1/2-Z,X
  • symmetry= 1/2+Y,1/2+X,-Z
  • symmetry= 1/2-Y,1/2-X,-Z
  • symmetry= 1/2+Y,1/2-X,Z
  • symmetry= 1/2-Y,1/2+X,Z
  • symmetry= 1/2+X,1/2+Z,-Y
  • symmetry= 1/2-X,1/2+Z,Y
  • symmetry= 1/2-X,1/2-Z,-Y
  • symmetry= 1/2+X,1/2-Z,Y
  • symmetry= 1/2+Z,1/2+Y,-X
  • symmetry= 1/2+Z,1/2-Y,X
  • symmetry= 1/2-Z,1/2+Y,X
  • symmetry= 1/2-Z,1/2-Y,-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and -1/4<=z<=1/4 and y<=min(x,1/2-x) and -y<=z<=y
  • 210 F4(1)32

  • Number of Symmetry Operators = 96
  • Space Group Name = F4(1)32
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 225
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= 1/2-Z,1/2+X,-Y
  • symmetry= Y,Z,X
  • symmetry= 1/2-Y,1/2+Z,-X
  • symmetry= 1/2+Y,-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= 3/4+Y,1/4+X,3/4-Z
  • symmetry= 1/4-Y,1/4-X,1/4-Z
  • symmetry= 1/4+Y,3/4-X,3/4+Z
  • symmetry= 3/4-Y,3/4+X,1/4+Z
  • {* << *}
  • symmetry= 3/4+X,1/4+Z,3/4-Y
  • symmetry= 3/4-X,3/4+Z,1/4+Y
  • symmetry= 1/4-X,1/4-Z,1/4-Y
  • symmetry= 1/4+X,3/4-Z,3/4+Y
  • symmetry= 3/4+Z,1/4+Y,3/4-X
  • symmetry= 1/4+Z,3/4-Y,3/4+X
  • symmetry= 3/4-Z,3/4+Y,1/4+X
  • symmetry= 1/4-Z,1/4-Y,1/4-X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,-Y,Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= 1/2-Z,X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 3/4+Y,3/4+X,1/4-Z
  • symmetry= 1/4-Y,3/4-X,3/4-Z
  • symmetry= 1/4+Y,1/4-X,1/4+Z
  • symmetry= 3/4-Y,1/4+X,3/4+Z
  • {* << *}
  • symmetry= 3/4+X,3/4+Z,1/4-Y
  • symmetry= 3/4-X,1/4+Z,3/4+Y
  • symmetry= 1/4-X,3/4-Z,3/4-Y
  • symmetry= 1/4+X,1/4-Z,1/4+Y
  • symmetry= 3/4+Z,3/4+Y,1/4-X
  • symmetry= 1/4+Z,1/4-Y,1/4+X
  • symmetry= 3/4-Z,1/4+Y,3/4+X
  • symmetry= 1/4-Z,3/4-Y,3/4-X
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,-Y,-Z
  • symmetry= 1/2+Z,X,1/2+Y
  • symmetry= Z,-X,-Y
  • symmetry= 1/2-Z,1/2-X,Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= 1/2+Y,Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,-Z,-X
  • symmetry= 1/2-Y,1/2-Z,X
  • symmetry= 1/4+Y,1/4+X,1/4-Z
  • symmetry= 3/4-Y,1/4-X,3/4-Z
  • symmetry= 3/4+Y,3/4-X,1/4+Z
  • symmetry= 1/4-Y,3/4+X,3/4+Z
  • {* << *}
  • symmetry= 1/4+X,1/4+Z,1/4-Y
  • symmetry= 1/4-X,3/4+Z,3/4+Y
  • symmetry= 3/4-X,1/4-Z,3/4-Y
  • symmetry= 3/4+X,3/4-Z,1/4+Y
  • symmetry= 1/4+Z,1/4+Y,1/4-X
  • symmetry= 3/4+Z,3/4-Y,1/4+X
  • symmetry= 1/4-Z,3/4+Y,3/4+X
  • symmetry= 3/4-Z,1/4-Y,3/4-X
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,Y,-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,X,-Y
  • symmetry= 1/2+Y,1/2+Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/4+Y,3/4+X,3/4-Z
  • symmetry= 3/4-Y,3/4-X,1/4-Z
  • symmetry= 3/4+Y,1/4-X,3/4+Z
  • symmetry= 1/4-Y,1/4+X,1/4+Z
  • {* << *}
  • symmetry= 1/4+X,3/4+Z,3/4-Y
  • symmetry= 1/4-X,1/4+Z,1/4+Y
  • symmetry= 3/4-X,3/4-Z,1/4-Y
  • symmetry= 3/4+X,1/4-Z,3/4+Y
  • symmetry= 1/4+Z,3/4+Y,3/4-X
  • symmetry= 3/4+Z,1/4-Y,3/4+X
  • symmetry= 1/4-Z,1/4+Y,1/4+X
  • symmetry= 3/4-Z,3/4-Y,1/4-X
  • asymm= 0<=x<=1/2 and -1/8<=y<=1/8 and -1/8<=z<=1/8 and y<=min(x,1/2-x) and -y<=z<=min(x,1/2-x)
  • 211 I432

  • Number of Symmetry Operators = 48
  • Space Group Name = I432
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 229
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2-X,1/2+Y
  • symmetry= 1/2-Z,1/2+X,1/2-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2-X
  • symmetry= 1/2-Y,1/2-Z,1/2+X
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2-Z,1/2-Y
  • symmetry= 1/2+X,1/2-Z,1/2+Y
  • symmetry= 1/2+Z,1/2+Y,1/2-X
  • symmetry= 1/2+Z,1/2-Y,1/2+X
  • symmetry= 1/2-Z,1/2+Y,1/2+X
  • symmetry= 1/2-Z,1/2-Y,1/2-X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4 and z<=min(x,1/2-x,y,1/2-y)
  • 212 P4(3)32

  • Number of Symmetry Operators = 24
  • Space Group Name = P4(3)32
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/4+Y,3/4+X,3/4-Z
  • symmetry= 1/4-Y,1/4-X,1/4-Z
  • symmetry= 3/4+Y,3/4-X,1/4+Z
  • symmetry= 3/4-Y,1/4+X,3/4+Z
  • symmetry= 1/4+X,3/4+Z,3/4-Y
  • symmetry= 3/4-X,1/4+Z,3/4+Y
  • symmetry= 1/4-X,1/4-Z,1/4-Y
  • symmetry= 3/4+X,3/4-Z,1/4+Y
  • symmetry= 1/4+Z,3/4+Y,3/4-X
  • symmetry= 3/4+Z,3/4-Y,1/4+X
  • symmetry= 3/4-Z,1/4+Y,3/4+X
  • symmetry= 1/4-Z,1/4-Y,1/4-X
  • asymm= 0<=x<=1/2 and 0<=y<=3/4 and -1/2<=z<=1/4 and max(-y,x-1/2)<=z<=min(1/2-y,2 x-y,2 y-x,y-2 x+1/2)
  • 213 P4(1)32

  • Number of Symmetry Operators = 24
  • Space Group Name = P4(1)32
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 3/4+Y,1/4+X,1/4-Z
  • symmetry= 3/4-Y,3/4-X,3/4-Z
  • symmetry= 1/4+Y,1/4-X,3/4+Z
  • symmetry= 1/4-Y,3/4+X,1/4+Z
  • symmetry= 3/4+X,1/4+Z,1/4-Y
  • symmetry= 1/4-X,3/4+Z,1/4+Y
  • symmetry= 3/4-X,3/4-Z,3/4-Y
  • symmetry= 1/4+X,1/4-Z,3/4+Y
  • symmetry= 3/4+Z,1/4+Y,1/4-X
  • symmetry= 1/4+Z,1/4-Y,3/4+X
  • symmetry= 1/4-Z,3/4+Y,1/4+X
  • symmetry= 3/4-Z,3/4-Y,3/4-X
  • asymm= -1/4<=x<=1/2 and 0<=y<=3/4 and 0<=z<=1/2 and x<=y<=x+1/2 and
  • y-x)/2<=z<=min(y,(-4 x-2 y+3)/2,(3-2 x-2 y)/4)
  • 214 I4(1)32

  • Number of Symmetry Operators = 48
  • Space Group Name = I4(1)32
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = 432
  • Patterson Space Group # = 229
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 3/4+Y,1/4+X,1/4-Z
  • symmetry= 3/4-Y,3/4-X,3/4-Z
  • symmetry= 1/4+Y,1/4-X,3/4+Z
  • symmetry= 1/4-Y,3/4+X,1/4+Z
  • symmetry= 3/4+X,1/4+Z,1/4-Y
  • symmetry= 1/4-X,3/4+Z,1/4+Y
  • symmetry= 3/4-X,3/4-Z,3/4-Y
  • symmetry= 1/4+X,1/4-Z,3/4+Y
  • symmetry= 3/4+Z,1/4+Y,1/4-X
  • symmetry= 1/4+Z,1/4-Y,3/4+X
  • symmetry= 1/4-Z,3/4+Y,1/4+X
  • symmetry= 3/4-Z,3/4-Y,3/4-X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,Z
  • symmetry= 1/2-X,Y,-Z
  • symmetry= X,-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= Z,-X,1/2-Y
  • symmetry= -Z,1/2-X,Y
  • symmetry= 1/2-Z,X,-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,Z,-X
  • symmetry= Y,-Z,1/2-X
  • symmetry= -Y,1/2-Z,X
  • symmetry= 1/4+Y,3/4+X,3/4-Z
  • symmetry= 1/4-Y,1/4-X,1/4-Z
  • symmetry= 3/4+Y,3/4-X,1/4+Z
  • symmetry= 3/4-Y,1/4+X,3/4+Z
  • symmetry= 1/4+X,3/4+Z,3/4-Y
  • symmetry= 3/4-X,1/4+Z,3/4+Y
  • symmetry= 1/4-X,1/4-Z,1/4-Y
  • symmetry= 3/4+X,3/4-Z,1/4+Y
  • symmetry= 1/4+Z,3/4+Y,3/4-X
  • symmetry= 3/4+Z,3/4-Y,1/4+X
  • symmetry= 3/4-Z,1/4+Y,3/4+X
  • symmetry= 1/4-Z,1/4-Y,1/4-X
  • asymm= -3/8<=x<=1/8 and -1/8<=y<=1/8 and -1/8<=z<=3/8 and max(x,y,y-x-1/8)<=z<=y+1/4
  • 215 P-43m

  • Number of Symmetry Operators = 24
  • Space Group Name = P-43m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = -43m
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= Z,Y,X
  • symmetry= Z,-Y,-X
  • symmetry= -Z,Y,-X
  • symmetry= -Z,-Y,X
  • asymm= 0<=x<=1 and 0<=y<=1/2 and 0<=z<=1/2 and y<=min(x,1-x) and z<=y
  • 216 F4-3m

  • Number of Symmetry Operators = 96
  • Space Group Name = F4-3m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = -43m
  • Patterson Space Group # = 225
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= Z,Y,X
  • symmetry= Z,-Y,-X
  • symmetry= -Z,Y,-X
  • symmetry= -Z,-Y,X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= Y,1/2+X,1/2+Z
  • symmetry= -Y,1/2-X,1/2+Z
  • symmetry= Y,1/2-X,1/2-Z
  • symmetry= -Y,1/2+X,1/2-Z
  • symmetry= X,1/2+Z,1/2+Y
  • symmetry= -X,1/2+Z,1/2-Y
  • symmetry= -X,1/2-Z,1/2+Y
  • symmetry= X,1/2-Z,1/2-Y
  • symmetry= Z,1/2+Y,1/2+X
  • symmetry= Z,1/2-Y,1/2-X
  • symmetry= -Z,1/2+Y,1/2-X
  • symmetry= -Z,1/2-Y,1/2+X
  • symmetry= 1/2+X,Y,1/2+Z
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= 1/2-X,Y,1/2-Z
  • symmetry= 1/2+X,-Y,1/2-Z
  • symmetry= 1/2+Z,X,1/2+Y
  • symmetry= 1/2+Z,-X,1/2-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= 1/2-Z,X,1/2-Y
  • symmetry= 1/2+Y,Z,1/2+X
  • symmetry= 1/2-Y,Z,1/2-X
  • symmetry= 1/2+Y,-Z,1/2-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/2+Y,X,1/2+Z
  • symmetry= 1/2-Y,-X,1/2+Z
  • symmetry= 1/2+Y,-X,1/2-Z
  • symmetry= 1/2-Y,X,1/2-Z
  • symmetry= 1/2+X,Z,1/2+Y
  • symmetry= 1/2-X,Z,1/2-Y
  • symmetry= 1/2-X,-Z,1/2+Y
  • symmetry= 1/2+X,-Z,1/2-Y
  • symmetry= 1/2+Z,Y,1/2+X
  • symmetry= 1/2+Z,-Y,1/2-X
  • symmetry= 1/2-Z,Y,1/2-X
  • symmetry= 1/2-Z,-Y,1/2+X
  • symmetry= 1/2+X,1/2+Y,Z
  • symmetry= 1/2-X,1/2-Y,Z
  • symmetry= 1/2-X,1/2+Y,-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= 1/2+Z,1/2+X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,1/2-X,Y
  • symmetry= 1/2-Z,1/2+X,-Y
  • symmetry= 1/2+Y,1/2+Z,X
  • symmetry= 1/2-Y,1/2+Z,-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,1/2-Z,X
  • symmetry= 1/2+Y,1/2+X,Z
  • symmetry= 1/2-Y,1/2-X,Z
  • symmetry= 1/2+Y,1/2-X,-Z
  • symmetry= 1/2-Y,1/2+X,-Z
  • symmetry= 1/2+X,1/2+Z,Y
  • symmetry= 1/2-X,1/2+Z,-Y
  • symmetry= 1/2-X,1/2-Z,Y
  • symmetry= 1/2+X,1/2-Z,-Y
  • symmetry= 1/2+Z,1/2+Y,X
  • symmetry= 1/2+Z,1/2-Y,-X
  • symmetry= 1/2-Z,1/2+Y,-X
  • symmetry= 1/2-Z,1/2-Y,X
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and -1/4<=z<=1/4 and y<=min(x,1/2-x) and -y<=z<=y
  • 217 I-43m

  • Number of Symmetry Operators = 48
  • Space Group Name = I-43m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = -43m
  • Patterson Space Group # = 229
  • Lattice Type = I
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,Z
  • symmetry= -Y,-X,Z
  • symmetry= Y,-X,-Z
  • symmetry= -Y,X,-Z
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= Z,Y,X
  • symmetry= Z,-Y,-X
  • symmetry= -Z,Y,-X
  • symmetry= -Z,-Y,X
  • symmetry= 1/2+X,1/2+Y,1/2+Z
  • symmetry= 1/2-X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2-Z
  • symmetry= 1/2+Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2-X,1/2+Y
  • symmetry= 1/2-Z,1/2+X,1/2-Y
  • symmetry= 1/2+Y,1/2+Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2-X
  • symmetry= 1/2-Y,1/2-Z,1/2+X
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2-Z,1/2+Y
  • symmetry= 1/2+X,1/2-Z,1/2-Y
  • symmetry= 1/2+Z,1/2+Y,1/2+X
  • symmetry= 1/2+Z,1/2-Y,1/2-X
  • symmetry= 1/2-Z,1/2+Y,1/2-X
  • symmetry= 1/2-Z,1/2-Y,1/2+X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=x and z<=y
  • 218 P-43n

  • Number of Symmetry Operators = 24
  • Space Group Name = P-43n
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = -43m
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2-Z,1/2+Y
  • symmetry= 1/2+X,1/2-Z,1/2-Y
  • symmetry= 1/2+Z,1/2+Y,1/2+X
  • symmetry= 1/2+Z,1/2-Y,1/2-X
  • symmetry= 1/2-Z,1/2+Y,1/2-X
  • symmetry= 1/2-Z,1/2-Y,1/2+X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and z<=min(x,y)
  • 219 F-43c

  • Number of Symmetry Operators = 96
  • Space Group Name = F-43c
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = -43m
  • Patterson Space Group # = 225
  • Lattice Type = F
  • symmetry= X,Y,Z
  • {***}
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2-Z,1/2+Y
  • symmetry= 1/2+X,1/2-Z,1/2-Y
  • symmetry= 1/2+Z,1/2+Y,1/2+X
  • symmetry= 1/2+Z,1/2-Y,1/2-X
  • symmetry= 1/2-Z,1/2+Y,1/2-X
  • symmetry= 1/2-Z,1/2-Y,1/2+X
  • symmetry= X,Y+1/2,Z+1/2
  • {***}
  • symmetry= -X,-Y+1/2,Z+1/2
  • symmetry= -X,Y+1/2,-Z+1/2
  • symmetry= X,-Y+1/2,-Z+1/2
  • symmetry= Z,X+1/2,Y+1/2
  • symmetry= Z,-X+1/2,-Y+1/2
  • symmetry= -Z,-X+1/2,Y+1/2
  • symmetry= -Z,X+1/2,-Y+1/2
  • symmetry= Y,Z+1/2,X+1/2
  • symmetry= -Y,Z+1/2,-X+1/2
  • symmetry= Y,-Z+1/2,-X+1/2)
  • symmetry= -Y,-Z+1/2,X+1/2
  • symmetry= 1/2+Y,X,Z
  • symmetry= 1/2-Y,-X,Z
  • symmetry= 1/2+Y,-X,-Z
  • symmetry= 1/2-Y,+X,-Z
  • symmetry= 1/2+X,+Z,Y
  • symmetry= 1/2-X,+Z,-Y
  • symmetry= 1/2-X,-Z,Y
  • symmetry= 1/2+X,-Z,-Y
  • symmetry= 1/2+Z,+Y,X
  • symmetry= 1/2+Z,-Y,-X
  • symmetry= 1/2-Z,+Y,-X
  • symmetry= 1/2-Z,-Y,X
  • symmetry= X+1/2,Y,Z+1/2
  • {***}
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y,-Z+1/2
  • symmetry= Z+1/2,X,Y+1/2
  • symmetry= Z+1/2,-X,-Y+1/2
  • symmetry= -Z+1/2,-X,Y+1/2
  • symmetry= -Z+1/2,X,-Y+1/2
  • symmetry= Y+1/2,Z,X+1/2
  • symmetry= -Y+1/2,Z,-X+1/2
  • symmetry= Y+1/2,-Z,-X+1/2
  • symmetry= -Y+1/2,-Z,X+1/2
  • symmetry= Y,1/2+X,Z
  • symmetry= -Y,1/2-X,Z
  • symmetry= Y,1/2-X,-Z
  • symmetry= -Y,1/2+X,-Z
  • symmetry= X,1/2+Z,Y
  • symmetry=(-X,1/2+Z,-Y
  • symmetry= -X,1/2-Z,Y
  • symmetry= X,1/2-Z,-Y
  • symmetry= Z,1/2+Y,X
  • symmetry= Z,1/2-Y,-X
  • symmetry= -Z,1/2+Y,-X
  • symmetry= -Z,1/2-Y,X
  • symmetry= X+1/2,Y+1/2,Z
  • {***}
  • symmetry= -X+1/2,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y+1/2,-Z
  • symmetry= Z+1/2,X+1/2,Y
  • symmetry= Z+1/2,-X+1/2,-Y
  • symmetry= -Z+1/2,-X+1/2,Y
  • symmetry= -Z+1/2,X+1/2,-Y
  • symmetry= Y+1/2,Z+1/2,X
  • symmetry= -Y+1/2,Z+1/2,-X
  • symmetry= Y+1/2,-Z+1/2,-X
  • symmetry= -Y+1/2,-Z+1/2,X
  • symmetry= Y,X,1/2+Z
  • symmetry= -Y,-X,1/2+Z
  • symmetry= Y,-X,1/2-Z
  • symmetry= -Y,X,1/2-Z
  • symmetry= X,Z,1/2+Y
  • symmetry= -X,Z,1/2-Y
  • symmetry= -X,-Z,1/2+Y
  • symmetry= X,-Z,1/2-Y
  • symmetry= Z,Y,1/2+X
  • symmetry= Z,-Y,1/2-X
  • symmetry= -Z,Y,1/2-X
  • symmetry= -Z,-Y,1/2+X
  • asymm= 0<=x<=1/2 and 0<=y<=1/4 and -1/4<=z<=1/4 and y<=min(x,1/2-x) and -y<=z<=y
  • 220 I-43d

  • Number of Symmetry Operators = 48
  • Space Group Name = I-43d
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = -43m
  • Patterson Space Group # = 229
  • Lattice Type = I
  • symmetry= X,Y,Z
  • {***}
  • symmetry= 1/2-X,-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= 1/2+Z,1/2-X,-Y
  • symmetry= 1/2-Z,-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,-X
  • symmetry= 1/2-Y,-Z,1/2+X
  • symmetry= 1/4+Y,1/4+X,1/4+Z
  • symmetry= 1/4-Y,3/4-X,3/4+Z
  • symmetry= 3/4+Y,1/4-X,3/4-Z
  • symmetry= 3/4-Y,3/4+X,1/4-Z
  • symmetry= 1/4+X,1/4+Z,1/4+Y
  • symmetry= 3/4-X,3/4+Z,1/4-Y
  • symmetry= 1/4-X,3/4-Z,3/4+Y
  • symmetry= 3/4+X,1/4-Z,3/4-Y
  • symmetry= 1/4+Z,1/4+Y,1/4+X
  • symmetry= 3/4+Z,1/4-Y,3/4-X
  • symmetry= 3/4-Z,3/4+Y,1/4-X
  • symmetry= 1/4-Z,3/4-Y,3/4+X
  • symmetry= X+1/2,Y+1/2,Z+1/2
  • {***}
  • symmetry= -X,-Y+1/2,Z
  • symmetry= -X+1/2,Y,-Z
  • symmetry= X,-Y,-Z+1/2
  • symmetry= Z+1/2,X+1/2,Y+1/2
  • symmetry= Z,-X,-Y+1/2
  • symmetry= -Z,-X+1/2,Y
  • symmetry= -Z+1/2,X,-Y
  • symmetry= Y+1/2,Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z,-X
  • symmetry= Y,-Z,-X+1/2
  • symmetry= -Y,-Z+1/2,X
  • symmetry= 3/4+Y,3/4+X,3/4+Z
  • symmetry= 3/4-Y,1/4-X,1/4+Z
  • symmetry= 1/4+Y,3/4-X,1/4-Z
  • symmetry= 1/4-Y,1/4+X,3/4-Z
  • symmetry= 3/4+X,3/4+Z,3/4+Y
  • symmetry= 1/4-X,1/4+Z,3/4-Y
  • symmetry= 3/4-X,1/4-Z,1/4+Y
  • symmetry= 1/4+X,3/4-Z,1/4-Y
  • symmetry= 3/4+Z,3/4+Y,3/4+X
  • symmetry= 1/4+Z,3/4-Y,1/4-X
  • symmetry= 1/4-Z,1/4+Y,3/4-X
  • symmetry= 3/4-Z,1/4-Y,1/4+X
  • asymm= 1/4<=x<=1/2 and 1/4<=y<=1/2 and 0<=z<=1/2 and z<=min(x,y)
  • 221 Pm-3m

  • Number of Symmetry Operators = 48
  • Space Group Name = Pm-3m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -Z,-Y,X
  • symmetry= -Z,Y,-X
  • symmetry= Z,-Y,-X
  • symmetry= Z,Y,X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=x and z<=y
  • 222 Pn-3n

  • Number of Symmetry Operators = 48
  • Space Group Name = Pn-3n
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -Z,-Y,X
  • symmetry= -Z,Y,-X
  • symmetry= Z,-Y,-X
  • symmetry= Z,Y,X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/2 and y<=x and z<=y
  • 223 Pm-3n

  • Number of Symmetry Operators = 48
  • Space Group Name = Pm-3n
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2-Z,1/2-Y
  • symmetry= 1/2+X,1/2-Z,1/2+Y
  • symmetry= 1/2+Z,1/2+Y,1/2-X
  • symmetry= 1/2+Z,1/2-Y,1/2+X
  • symmetry= 1/2-Z,1/2+Y,1/2+X
  • symmetry= 1/2-Z,1/2-Y,1/2-X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= 1/2-Y,1/2-X,1/2+Z
  • symmetry= 1/2+Y,1/2+X,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2-Z
  • symmetry= 1/2-X,1/2-Z,1/2+Y
  • symmetry= 1/2+X,1/2-Z,1/2-Y
  • symmetry= 1/2+X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2+Z,1/2-Y
  • symmetry= 1/2-Z,1/2-Y,1/2+X
  • symmetry= 1/2-Z,1/2+Y,1/2-X
  • symmetry= 1/2+Z,1/2-Y,1/2-X
  • symmetry= 1/2+Z,1/2+Y,1/2+X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and 0<=z<=1/4 and z<=min(x,1/2-x,y,1/2-y)
  • 224 Pn-3m

  • Number of Symmetry Operators = 48
  • Space Group Name = Pn-3m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 221
  • Lattice Type = P
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= 1/2+Y,1/2+X,1/2-Z
  • symmetry= 1/2-Y,1/2-X,1/2-Z
  • symmetry= 1/2+Y,1/2-X,1/2+Z
  • symmetry= 1/2-Y,1/2+X,1/2+Z
  • symmetry= 1/2+X,1/2+Z,1/2-Y
  • symmetry= 1/2-X,1/2+Z,1/2+Y
  • symmetry= 1/2-X,1/2-Z,1/2-Y
  • symmetry= 1/2+X,1/2-Z,1/2+Y
  • symmetry= 1/2+Z,1/2+Y,1/2-X
  • symmetry= 1/2+Z,1/2-Y,1/2+X
  • symmetry= 1/2-Z,1/2+Y,1/2+X
  • symmetry= 1/2-Z,1/2-Y,1/2-X
  • symmetry= 1/2-X,1/2-Y,1/2-Z
  • symmetry= 1/2+X,1/2+Y,1/2-Z
  • symmetry= 1/2+X,1/2-Y,1/2+Z
  • symmetry= 1/2-X,1/2+Y,1/2+Z
  • symmetry= 1/2-Z,1/2-X,1/2-Y
  • symmetry= 1/2-Z,1/2+X,1/2+Y
  • symmetry= 1/2+Z,1/2+X,1/2-Y
  • symmetry= 1/2+Z,1/2-X,1/2+Y
  • symmetry= 1/2-Y,1/2-Z,1/2-X
  • symmetry= 1/2+Y,1/2-Z,1/2+X
  • symmetry= 1/2-Y,1/2+Z,1/2+X
  • symmetry= 1/2+Y,1/2+Z,1/2-X
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -Z,-Y,X
  • symmetry= -Z,Y,-X
  • symmetry= Z,-Y,-X
  • symmetry= Z,Y,X
  • asymm= 0<=x<=1/2 and 0<=y<=1/2 and -1/4<=z<=1/4 and y<=x and max(x-1/2,-y)<=z<=min(1/2-x,y)
  • 225 Fm-3m

  • Number of Symmetry Operators = 192
  • Space Group Name = Fm-3m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 225
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -Z,-Y,X
  • symmetry= -Z,Y,-X
  • symmetry= Z,-Y,-X
  • symmetry= Z,Y,X
  • symmetry= X,1/2+Y,1/2+Z
  • symmetry= -X,1/2-Y,1/2+Z
  • symmetry= -X,1/2+Y,1/2-Z
  • symmetry= X,1/2-Y,1/2-Z
  • symmetry= Z,1/2+X,1/2+Y
  • symmetry= Z,1/2-X,1/2-Y
  • symmetry= -Z,1/2-X,1/2+Y
  • symmetry= -Z,1/2+X,1/2-Y
  • symmetry= Y,1/2+Z,1/2+X
  • symmetry= -Y,1/2+Z,1/2-X
  • symmetry= Y,1/2-Z,1/2-X
  • symmetry= -Y,1/2-Z,1/2+X
  • symmetry= Y,1/2+X,1/2-Z
  • symmetry= -Y,1/2-X,1/2-Z
  • symmetry= Y,1/2-X,1/2+Z
  • symmetry= -Y,1/2+X,1/2+Z
  • symmetry= X,1/2+Z,1/2-Y
  • symmetry= -X,1/2+Z,1/2+Y
  • symmetry= -X,1/2-Z,1/2-Y
  • symmetry= X,1/2-Z,1/2+Y
  • symmetry= Z,1/2+Y,1/2-X
  • symmetry= Z,1/2-Y,1/2+X
  • symmetry= -Z,1/2+Y,1/2+X
  • symmetry= -Z,1/2-Y,1/2-X
  • symmetry= -X,1/2-Y,1/2-Z
  • symmetry= X,Y+1/2,-Z+1/2
  • symmetry= X,-Y+1/2,Z+1/2
  • symmetry= -X,Y+1/2,Z+1/2
  • symmetry= -Z,-X+1/2,-Y+1/2
  • symmetry= -Z,X+1/2,Y+1/2
  • symmetry= Z,X+1/2,-Y+1/2
  • symmetry= Z,-X+1/2,Y+1/2
  • symmetry= -Y,-Z+1/2,-X+1/2
  • symmetry= Y,-Z+1/2,X+1/2
  • symmetry= -Y,Z+1/2,X+1/2
  • symmetry= Y,Z+1/2,-X+1/2
  • symmetry= -Y,-X+1/2,Z+1/2
  • symmetry= Y,X+1/2,Z+1/2
  • symmetry= -Y,X+1/2,-Z+1/2
  • symmetry= Y,-X+1/2,-Z+1/2
  • symmetry= -X,-Z+1/2,Y+1/2
  • symmetry= X,-Z+1/2,-Y+1/2
  • symmetry= X,Z+1/2,Y+1/2
  • symmetry= -X,Z+1/2,-Y+1/2
  • symmetry= -Z,-Y+1/2,X+1/2
  • symmetry= -Z,Y+1/2,-X+1/2
  • symmetry= Z,-Y+1/2,-X+1/2
  • symmetry= Z,Y+1/2,X+1/2
  • symmetry= X+1/2,Y,Z+1/2
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y,-Z+1/2
  • symmetry= Z+1/2,X,Y+1/2
  • symmetry= Z+1/2,-X,-Y+1/2
  • symmetry= -Z+1/2,-X,Y+1/2
  • symmetry= -Z+1/2,X,-Y+1/2
  • symmetry= Y+1/2,Z,X+1/2
  • symmetry= -Y+1/2,Z,-X+1/2
  • symmetry= Y+1/2,-Z,-X+1/2
  • symmetry= -Y+1/2,-Z,X+1/2
  • symmetry= Y+1/2,X,-Z+1/2
  • symmetry= -Y+1/2,-X,-Z+1/2
  • symmetry= Y+1/2,-X,Z+1/2
  • symmetry= -Y+1/2,X,Z+1/2
  • symmetry= X+1/2,Z,-Y+1/2
  • symmetry= -X+1/2,Z,Y+1/2
  • symmetry= -X+1/2,-Z,-Y+1/2
  • symmetry= X+1/2,-Z,Y+1/2
  • symmetry= Z+1/2,Y,-X+1/2
  • symmetry= Z+1/2,-Y,X+1/2
  • symmetry= -Z+1/2,Y,X+1/2
  • symmetry= -Z+1/2,-Y,-X+1/2
  • symmetry= -X+1/2,-Y,-Z+1/2
  • symmetry= X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y,Z+1/2
  • symmetry= -X+1/2,Y,Z+1/2
  • symmetry= -Z+1/2,-X,-Y+1/2
  • symmetry= -Z+1/2,X,Y+1/2
  • symmetry= Z+1/2,X,-Y+1/2
  • symmetry= Z+1/2,-X,Y+1/2
  • symmetry= -Y+1/2,-Z,-X+1/2
  • symmetry= Y+1/2,-Z,X+1/2
  • symmetry= -Y+1/2,Z,X+1/2
  • symmetry= Y+1/2,Z,-X+1/2
  • symmetry= -Y+1/2,-X,Z+1/2
  • symmetry= Y+1/2,X,Z+1/2
  • symmetry= -Y+1/2,X,-Z+1/2
  • symmetry= Y+1/2,-X,-Z+1/2
  • symmetry= -X+1/2,-Z,Y+1/2
  • symmetry= X+1/2,-Z,-Y+1/2
  • symmetry= X+1/2,Z,Y+1/2
  • symmetry= -X+1/2,Z,-Y+1/2
  • symmetry= -Z+1/2,-Y,X+1/2
  • symmetry= -Z+1/2,Y,-X+1/2
  • symmetry= Z+1/2,-Y,-X+1/2
  • symmetry= Z+1/2,Y,X+1/2
  • symmetry= X+1/2,Y+1/2,Z
  • symmetry= -X+1/2,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y+1/2,-Z
  • symmetry= Z+1/2,X+1/2,Y
  • symmetry= Z+1/2,-X+1/2,-Y
  • symmetry= -Z+1/2,-X+1/2,Y
  • symmetry= -Z+1/2,X+1/2,-Y
  • symmetry= Y+1/2,Z+1/2,X
  • symmetry= -Y+1/2,Z+1/2,-X
  • symmetry= Y+1/2,-Z+1/2,-X
  • symmetry= -Y+1/2,-Z+1/2,X
  • symmetry= Y+1/2,X+1/2,-Z
  • symmetry= -Y+1/2,-X+1/2,-Z
  • symmetry= Y+1/2,-X+1/2,Z
  • symmetry= -Y+1/2,X+1/2,Z
  • symmetry= X+1/2,Z+1/2,-Y
  • symmetry= -X+1/2,Z+1/2,Y
  • symmetry= -X+1/2,-Z+1/2,-Y
  • symmetry= X+1/2,-Z+1/2,Y
  • symmetry= Z+1/2,Y+1/2,-X
  • symmetry= Z+1/2,-Y+1/2,X
  • symmetry= -Z+1/2,Y+1/2,X
  • symmetry= -Z+1/2,-Y+1/2,-X
  • symmetry= -X+1/2,-Y+1/2,-Z
  • symmetry= X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,Z
  • symmetry= -Z+1/2,-X+1/2,-Y
  • symmetry= -Z+1/2,X+1/2,Y
  • symmetry= Z+1/2,X+1/2,-Y
  • symmetry= Z+1/2,-X+1/2,Y
  • symmetry= -Y+1/2,-Z+1/2,-X
  • symmetry= Y+1/2,-Z+1/2,X
  • symmetry= -Y+1/2,Z+1/2,X
  • symmetry= Y+1/2,Z+1/2,-X
  • symmetry= -Y+1/2,-X+1/2,Z
  • symmetry= Y+1/2,X+1/2,Z
  • symmetry= -Y+1/2,X+1/2,-Z
  • symmetry= Y+1/2,-X+1/2,-Z
  • symmetry= -X+1/2,-Z+1/2,Y
  • symmetry= X+1/2,-Z+1/2,-Y
  • symmetry= X+1/2,Z+1/2,Y
  • symmetry= -X+1/2,Z+1/2,-Y
  • symmetry= -Z+1/2,-Y+1/2,X
  • symmetry= -Z+1/2,Y+1/2,-X
  • symmetry= Z+1/2,-Y+1/2,-X
  • symmetry= Z+1/2,Y+1/2,X
  • 226 Fm-3c

  • Number of Symmetry Operators = 192
  • Space Group Name = Fm-3c
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 226
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y+1/2,X+1/2,-Z+1/2
  • symmetry= -Y+1/2,-X+1/2,-Z+1/2
  • symmetry= Y+1/2,-X+1/2,Z+1/2
  • symmetry= -Y+1/2,X+1/2,Z+1/2
  • symmetry= X+1/2,Z+1/2,-Y+1/2
  • symmetry= -X+1/2,Z+1/2,Y+1/2
  • symmetry= -X+1/2,-Z+1/2,-Y+1/2
  • symmetry= X+1/2,-Z+1/2,Y+1/2
  • symmetry= Z+1/2,Y+1/2,-X+1/2
  • symmetry= Z+1/2,-Y+1/2,X+1/2
  • symmetry= -Z+1/2,Y+1/2,X+1/2
  • symmetry= -Z+1/2,-Y+1/2,-X+1/2
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= -Y+1/2,-X+1/2,Z+1/2
  • symmetry= Y+1/2,X+1/2,Z+1/2
  • symmetry= -Y+1/2,X+1/2,-Z+1/2
  • symmetry= Y+1/2,-X+1/2,-Z+1/2
  • symmetry= -X+1/2,-Z+1/2,Y+1/2
  • symmetry= X+1/2,-Z+1/2,-Y+1/2
  • symmetry= X+1/2,Z+1/2,Y+1/2
  • symmetry= -X+1/2,Z+1/2,-Y+1/2
  • symmetry= -Z+1/2,-Y+1/2,X+1/2
  • symmetry= -Z+1/2,Y+1/2,-X+1/2
  • symmetry= Z+1/2,-Y+1/2,-X+1/2
  • symmetry= Z+1/2,Y+1/2,X+1/2
  • symmetry= X,Y+1/2,Z+1/2
  • symmetry= -X,-Y+1/2,Z+1/2
  • symmetry= -X,Y+1/2,-Z+1/2
  • symmetry= X,-Y+1/2,-Z+1/2
  • symmetry= Z,X+1/2,Y+1/2
  • symmetry= Z,-X+1/2,-Y+1/2
  • symmetry= -Z,-X+1/2,Y+1/2
  • symmetry= -Z,X+1/2,-Y+1/2
  • symmetry= Y,Z+1/2,X+1/2
  • symmetry= -Y,Z+1/2,-X+1/2
  • symmetry= Y,-Z+1/2,-X+1/2
  • symmetry= -Y,-Z+1/2,X+1/2
  • symmetry= Y+1/2,X,-Z
  • symmetry= -Y+1/2,-X,-Z
  • symmetry= Y+1/2,-X,Z
  • symmetry= -Y+1/2,X,Z
  • symmetry= X+1/2,Z,-Y
  • symmetry= -X+1/2,Z,Y
  • symmetry= -X+1/2,-Z,-Y
  • symmetry= X+1/2,-Z,Y
  • symmetry= Z+1/2,Y,-X
  • symmetry= Z+1/2,-Y,X
  • symmetry= -Z+1/2,Y,X
  • symmetry= -Z+1/2,-Y,-X
  • symmetry= -X,-Y+1/2,-Z+1/2
  • symmetry= X,Y+1/2,-Z+1/2
  • symmetry= X,-Y+1/2,Z+1/2
  • symmetry= -X,Y+1/2,Z+1/2
  • symmetry= -Z,-X+1/2,-Y+1/2
  • symmetry= -Z,X+1/2,Y+1/2
  • symmetry= Z,X+1/2,-Y+1/2
  • symmetry= Z,-X+1/2,Y+1/2
  • symmetry= -Y,-Z+1/2,-X+1/2
  • symmetry= Y,-Z+1/2,X+1/2
  • symmetry= -Y,Z+1/2,X+1/2
  • symmetry= Y,Z+1/2,-X+1/2
  • symmetry= -Y+1/2,-X,Z
  • symmetry= Y+1/2,X,Z
  • symmetry= -Y+1/2,X,-Z
  • symmetry= Y+1/2,-X,-Z
  • symmetry= -X+1/2,-Z,Y
  • symmetry= X+1/2,-Z,-Y
  • symmetry= X+1/2,Z,Y
  • symmetry= -X+1/2,Z,-Y
  • symmetry= -Z+1/2,-Y,X
  • symmetry= -Z+1/2,Y,-X
  • symmetry= Z+1/2,-Y,-X
  • symmetry= Z+1/2,Y,X
  • symmetry= X+1/2,Y,Z+1/2
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y,-Z+1/2
  • symmetry= Z+1/2,X,Y+1/2
  • symmetry= Z+1/2,-X,-Y+1/2
  • symmetry= -Z+1/2,-X,Y+1/2
  • symmetry= -Z+1/2,X,-Y+1/2
  • symmetry= Y+1/2,Z,X+1/2
  • symmetry= -Y+1/2,Z,-X+1/2
  • symmetry= Y+1/2,-Z,-X+1/2
  • symmetry= -Y+1/2,-Z,X+1/2
  • symmetry= Y,X+1/2,-Z
  • symmetry= -Y,-X+1/2,-Z
  • symmetry= Y,-X+1/2,Z
  • symmetry= -Y,X+1/2,Z
  • symmetry= X,Z+1/2,-Y
  • symmetry= -X,Z+1/2,Y
  • symmetry= -X,-Z+1/2,-Y
  • symmetry= X,-Z+1/2,Y
  • symmetry= Z,Y+1/2,-X
  • symmetry= Z,-Y+1/2,X
  • symmetry= -Z,Y+1/2,X
  • symmetry= -Z,-Y+1/2,-X
  • symmetry= -X+1/2,-Y,-Z+1/2
  • symmetry= X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y,Z+1/2
  • symmetry= -X+1/2,Y,Z+1/2
  • symmetry= -Z+1/2,-X,-Y+1/2
  • symmetry= -Z+1/2,X,Y+1/2
  • symmetry= Z+1/2,X,-Y+1/2
  • symmetry= Z+1/2,-X,Y+1/2
  • symmetry= -Y+1/2,-Z,-X+1/2
  • symmetry= Y+1/2,-Z,X+1/2
  • symmetry= -Y+1/2,Z,X+1/2
  • symmetry= Y+1/2,Z,-X+1/2
  • symmetry= -Y,-X+1/2,Z
  • symmetry= Y,X+1/2,Z
  • symmetry= -Y,X+1/2,-Z
  • symmetry= Y,-X+1/2,-Z
  • symmetry= -X,-Z+1/2,Y
  • symmetry= X,-Z+1/2,-Y
  • symmetry= X,Z+1/2,Y
  • symmetry= -X,Z+1/2,-Y
  • symmetry= -Z,-Y+1/2,X
  • symmetry= -Z,Y+1/2,-X
  • symmetry= Z,-Y+1/2,-X
  • symmetry= Z,Y+1/2,X
  • symmetry= X+1/2,Y+1/2,Z
  • symmetry= -X+1/2,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y+1/2,-Z
  • symmetry= Z+1/2,X+1/2,Y
  • symmetry= Z+1/2,-X+1/2,-Y
  • symmetry= -Z+1/2,-X+1/2,Y
  • symmetry= -Z+1/2,X+1/2,-Y
  • symmetry= Y+1/2,Z+1/2,X
  • symmetry= -Y+1/2,Z+1/2,-X
  • symmetry= Y+1/2,-Z+1/2,-X
  • symmetry= -Y+1/2,-Z+1/2,X
  • symmetry= Y,X,-Z+1/2
  • symmetry= -Y,-X,-Z+1/2
  • symmetry= Y,-X,Z+1/2
  • symmetry= -Y,X,Z+1/2
  • symmetry= X,Z,-Y+1/2
  • symmetry= -X,Z,Y+1/2
  • symmetry= -X,-Z,-Y+1/2
  • symmetry= X,-Z,Y+1/2
  • symmetry= Z,Y,-X+1/2
  • symmetry= Z,-Y,X+1/2
  • symmetry= -Z,Y,X+1/2
  • symmetry= -Z,-Y,-X+1/2
  • symmetry= -X+1/2,-Y+1/2,-Z
  • symmetry= X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y+1/2,Z
  • symmetry= -X+1/2,Y+1/2,Z
  • symmetry= -Z+1/2,-X+1/2,-Y
  • symmetry= -Z+1/2,X+1/2,Y
  • symmetry= Z+1/2,X+1/2,-Y
  • symmetry= Z+1/2,-X+1/2,Y
  • symmetry= -Y+1/2,-Z+1/2,-X
  • symmetry= Y+1/2,-Z+1/2,X
  • symmetry= -Y+1/2,Z+1/2,X
  • symmetry= Y+1/2,Z+1/2,-X
  • symmetry= -Y,-X,Z+1/2
  • symmetry= Y,X,Z+1/2
  • symmetry= -Y,X,-Z+1/2
  • symmetry= Y,-X,-Z+1/2
  • symmetry= -X,-Z,Y+1/2
  • symmetry= X,-Z,-Y+1/2
  • symmetry= X,Z,Y+1/2
  • symmetry= -X,Z,-Y+1/2
  • symmetry= -Z,-Y,X+1/2
  • symmetry= -Z,Y,-X+1/2
  • symmetry= Z,-Y,-X+1/2
  • symmetry= Z,Y,X+1/2
  • 227 FD-3m

  • Number of Symmetry Operators = 192
  • Space Group Name = FD-3m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 227
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y+1/2,Z+1/2
  • symmetry= -X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y,-Z+1/2
  • symmetry= Z,X,Y
  • symmetry= Z+1/2,-X,-Y+1/2
  • symmetry= -Z,-X+1/2,Y+1/2
  • symmetry= -Z+1/2,X+1/2,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y+1/2,Z+1/2,-X
  • symmetry= Y+1/2,-Z,-X+1/2
  • symmetry= -Y,-Z+1/2,X+1/2
  • symmetry= Y+3/4,X+1/4,-Z+3/4
  • symmetry= -Y+1/4,-X+1/4,-Z+1/4
  • symmetry= Y+1/4,-X+3/4,Z+3/4
  • symmetry= -Y+3/4,X+3/4,Z+1/4
  • symmetry= X+3/4,Z+1/4,-Y+3/4
  • symmetry= -X+3/4,Z+3/4,Y+1/4
  • symmetry= -X+1/4,-Z+1/4,-Y+1/4
  • symmetry= X+1/4,-Z+3/4,Y+3/4
  • symmetry= Z+3/4,Y+1/4,-X+3/4
  • symmetry= Z+1/4,-Y+3/4,X+3/4
  • symmetry= -Z+3/4,Y+3/4,X+1/4
  • symmetry= -Z+1/4,-Y+1/4,-X+1/4
  • symmetry= -X+1/4,-Y+1/4,-Z+1/4
  • symmetry= X+1/4,Y+3/4,-Z+3/4
  • symmetry= X+3/4,-Y+3/4,Z+1/4
  • symmetry= -X+3/4,Y+1/4,Z+3/4
  • symmetry= -Z+1/4,-X+1/4,-Y+1/4
  • symmetry= -Z+3/4,X+1/4,Y+3/4
  • symmetry= Z+1/4,X+3/4,-Y+3/4
  • symmetry= Z+3/4,-X+3/4,Y+1/4
  • symmetry= -Y+1/4,-Z+1/4,-X+1/4
  • symmetry= Y+3/4,-Z+3/4,X+1/4
  • symmetry= -Y+3/4,Z+1/4,X+3/4
  • symmetry= Y+1/4,Z+3/4,-X+3/4
  • symmetry= -Y+1/2,-X,Z+1/2
  • symmetry= Y,X,Z
  • symmetry= -Y,X+1/2,-Z+1/2
  • symmetry= Y+1/2,-X+1/2,-Z
  • symmetry= -X+1/2,-Z,Y+1/2
  • symmetry= X+1/2,-Z+1/2,-Y
  • symmetry= X,Z,Y
  • symmetry= -X,Z+1/2,-Y+1/2
  • symmetry= -Z+1/2,-Y,X+1/2
  • symmetry= -Z,Y+1/2,-X+1/2
  • symmetry= Z+1/2,-Y+1/2,-X
  • symmetry= Z,Y,X
  • symmetry= X,Y+1/2,Z+1/2
  • symmetry= -X,-Y,Z
  • symmetry= -X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y+1/2,-Z
  • symmetry= Z,X+1/2,Y+1/2
  • symmetry= Z+1/2,-X+1/2,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z+1/2,X,-Y+1/2
  • symmetry= Y,Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z,-X+1/2
  • symmetry= Y+1/2,-Z+1/2,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y+3/4,X+3/4,-Z+1/4
  • symmetry= -Y+1/4,-X+3/4,-Z+3/4
  • symmetry= Y+1/4,-X+1/4,Z+1/4
  • symmetry= -Y+3/4,X+1/4,Z+3/4
  • symmetry= X+3/4,Z+3/4,-Y+1/4
  • symmetry= -X+3/4,Z+1/4,Y+3/4
  • symmetry= -X+1/4,-Z+3/4,-Y+3/4
  • symmetry= X+1/4,-Z+1/4,Y+1/4
  • symmetry= Z+3/4,Y+3/4,-X+1/4
  • symmetry= Z+1/4,-Y+1/4,X+1/4
  • symmetry= -Z+3/4,Y+1/4,X+3/4
  • symmetry= -Z+1/4,-Y+3/4,-X+3/4
  • symmetry= -X+1/4,-Y+3/4,-Z+3/4
  • symmetry= X+1/4,Y+1/4,-Z+1/4
  • symmetry= X+3/4,-Y+1/4,Z+3/4
  • symmetry= -X+3/4,Y+3/4,Z+1/4
  • symmetry= -Z+1/4,-X+3/4,-Y+3/4
  • symmetry= -Z+3/4,X+3/4,Y+1/4
  • symmetry= Z+1/4,X+1/4,-Y+1/4
  • symmetry= Z+3/4,-X+1/4,Y+3/4
  • symmetry= -Y+1/4,-Z+3/4,-X+3/4
  • symmetry= Y+3/4,-Z+1/4,X+3/4
  • symmetry= -Y+3/4,Z+3/4,X+1/4
  • symmetry= Y+1/4,Z+1/4,-X+1/4
  • symmetry= -Y+1/2,-X+1/2,Z
  • symmetry= Y,X+1/2,Z+1/2
  • symmetry= -Y,X,-Z
  • symmetry= Y+1/2,-X,-Z+1/2
  • symmetry= -X+1/2,-Z+1/2,Y
  • symmetry= X+1/2,-Z,-Y+1/2
  • symmetry= X,Z+1/2,Y+1/2
  • symmetry= -X,Z,-Y
  • symmetry= -Z+1/2,-Y+1/2,X
  • symmetry= -Z,Y,-X
  • symmetry= Z+1/2,-Y,-X+1/2
  • symmetry= Z,Y+1/2,X+1/2
  • symmetry= X+1/2,Y,Z+1/2
  • symmetry= -X+1/2,-Y+1/2,Z
  • symmetry= -X,Y+1/2,-Z+1/2
  • symmetry= X,-Y,-Z
  • symmetry= Z+1/2,X,Y+1/2
  • symmetry= Z,-X,-Y
  • symmetry= -Z+1/2,-X+1/2,Y
  • symmetry= -Z,X+1/2,-Y+1/2
  • symmetry= Y+1/2,Z,X+1/2
  • symmetry= -Y,Z+1/2,-X+1/2
  • symmetry= Y,-Z,-X
  • symmetry= -Y+1/2,-Z+1/2,X
  • symmetry= Y+1/4,X+1/4,-Z+1/4
  • symmetry= -Y+3/4,-X+1/4,-Z+3/4
  • symmetry= Y+3/4,-X+3/4,Z+1/4
  • symmetry= -Y+1/4,X+3/4,Z+3/4
  • symmetry= X+1/4,Z+1/4,-Y+1/4
  • symmetry= -X+1/4,Z+3/4,Y+3/4
  • symmetry= -X+3/4,-Z+1/4,-Y+3/4
  • symmetry= X+3/4,-Z+3/4,Y+1/4
  • symmetry= Z+1/4,Y+1/4,-X+1/4
  • symmetry= Z+3/4,-Y+3/4,X+1/4
  • symmetry= -Z+1/4,Y+3/4,X+3/4
  • symmetry= -Z+3/4,-Y+1/4,-X+3/4
  • symmetry= -X+3/4,-Y+1/4,-Z+3/4
  • symmetry= X+3/4,Y+3/4,-Z+1/4
  • symmetry= X+1/4,-Y+3/4,Z+3/4
  • symmetry= -X+1/4,Y+1/4,Z+1/4
  • symmetry= -Z+3/4,-X+1/4,-Y+3/4
  • symmetry= -Z+1/4,X+1/4,Y+1/4
  • symmetry= Z+3/4,X+3/4,-Y+1/4
  • symmetry= Z+1/4,-X+3/4,Y+3/4
  • symmetry= -Y+3/4,-Z+1/4,-X+3/4
  • symmetry= Y+1/4,-Z+3/4,X+3/4
  • symmetry= -Y+1/4,Z+1/4,X+1/4
  • symmetry= Y+3/4,Z+3/4,-X+1/4
  • symmetry= -Y,-X,Z
  • symmetry= Y+1/2,X,Z+1/2
  • symmetry= -Y+1/2,X+1/2,-Z
  • symmetry= Y,-X+1/2,-Z+1/2
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z+1/2,-Y+1/2
  • symmetry= X+1/2,Z,Y+1/2
  • symmetry= -X+1/2,Z+1/2,-Y
  • symmetry= -Z,-Y,X
  • symmetry= -Z+1/2,Y+1/2,-X
  • symmetry= Z,-Y+1/2,-X+1/2
  • symmetry= Z+1/2,Y,X+1/2
  • symmetry= X+1/2,Y+1/2,Z
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y+1/2,-Z+1/2
  • symmetry= Z+1/2,X+1/2,Y
  • symmetry= Z,-X+1/2,-Y+1/2
  • symmetry= -Z+1/2,-X,Y+1/2
  • symmetry= -Z,X,-Y
  • symmetry= Y+1/2,Z+1/2,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z+1/2,-X+1/2
  • symmetry= -Y+1/2,-Z,X+1/2
  • symmetry= Y+1/4,X+3/4,-Z+3/4
  • symmetry= -Y+3/4,-X+3/4,-Z+1/4
  • symmetry= Y+3/4,-X+1/4,Z+3/4
  • symmetry= -Y+1/4,X+1/4,Z+1/4
  • symmetry= X+1/4,Z+3/4,-Y+3/4
  • symmetry= -X+1/4,Z+1/4,Y+1/4
  • symmetry= -X+3/4,-Z+3/4,-Y+1/4
  • symmetry= X+3/4,-Z+1/4,Y+3/4
  • symmetry= Z+1/4,Y+3/4,-X+3/4
  • symmetry= Z+3/4,-Y+1/4,X+3/4
  • symmetry= -Z+1/4,Y+1/4,X+1/4
  • symmetry= -Z+3/4,-Y+3/4,-X+1/4
  • symmetry= -X+3/4,-Y+3/4,-Z+1/4
  • symmetry= X+3/4,Y+1/4,-Z+3/4
  • symmetry= X+1/4,-Y+1/4,Z+1/4
  • symmetry= -X+1/4,Y+3/4,Z+3/4
  • symmetry= -Z+3/4,-X+3/4,-Y+1/4
  • symmetry= -Z+1/4,X+3/4,Y+3/4
  • symmetry= Z+3/4,X+1/4,-Y+3/4
  • symmetry= Z+1/4,-X+1/4,Y+1/4
  • symmetry= -Y+3/4,-Z+3/4,-X+1/4
  • symmetry= Y+1/4,-Z+1/4,X+1/4
  • symmetry= -Y+1/4,Z+3/4,X+3/4
  • symmetry= Y+3/4,Z+1/4,-X+3/4
  • symmetry= -Y,-X+1/2,Z+1/2
  • symmetry= Y+1/2,X+1/2,Z
  • symmetry= -Y+1/2,X,-Z+1/2
  • symmetry= Y,-X,-Z
  • symmetry= -X,-Z+1/2,Y+1/2
  • symmetry= X,-Z,-Y
  • symmetry= X+1/2,Z+1/2,Y
  • symmetry= -X+1/2,Z,-Y+1/2
  • symmetry= -Z,-Y+1/2,X+1/2
  • symmetry= -Z+1/2,Y,-X+1/2
  • symmetry= Z,-Y,-X
  • symmetry= Z+1/2,Y+1/2,X
  • 228 FD-3c

  • Number of Symmetry Operators = 192
  • Space Group Name = FD-3c
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 228
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y+1/2,Z+1/2
  • symmetry= -X+1/2,Y+1/2,-Z
  • symmetry= X+1/2,-Y,-Z+1/2
  • symmetry= Z,X,Y
  • symmetry= Z+1/2,-X,-Y+1/2
  • symmetry= -Z,-X+1/2,Y+1/2
  • symmetry= -Z+1/2,X+1/2,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y+1/2,Z+1/2,-X
  • symmetry= Y+1/2,-Z,-X+1/2
  • symmetry= -Y,-Z+1/2,X+1/2
  • symmetry= Y+3/4,X+1/4,-Z+3/4
  • symmetry= -Y+1/4,-X+1/4,-Z+1/4
  • symmetry= Y+1/4,-X+3/4,Z+3/4
  • symmetry= -Y+3/4,X+3/4,Z+1/4
  • symmetry= X+3/4,Z+1/4,-Y+3/4
  • symmetry= -X+3/4,Z+3/4,Y+1/4
  • symmetry= -X+1/4,-Z+1/4,-Y+1/4
  • symmetry= X+1/4,-Z+3/4,Y+3/4
  • symmetry= Z+3/4,Y+1/4,-X+3/4
  • symmetry= Z+1/4,-Y+3/4,X+3/4
  • symmetry= -Z+3/4,Y+3/4,X+1/4
  • symmetry= -Z+1/4,-Y+1/4,-X+1/4
  • symmetry= -X+3/4,-Y+3/4,-Z+3/4
  • symmetry= X+3/4,Y+1/4,-Z+1/4
  • symmetry= X+1/4,-Y+1/4,Z+3/4
  • symmetry= -X+1/4,Y+3/4,Z+1/4
  • symmetry= -Z+3/4,-X+3/4,-Y+3/4
  • symmetry= -Z+1/4,X+3/4,Y+1/4
  • symmetry= Z+3/4,X+1/4,-Y+1/4
  • symmetry= Z+1/4,-X+1/4,Y+3/4
  • symmetry= -Y+3/4,-Z+3/4,-X+3/4
  • symmetry= Y+1/4,-Z+1/4,X+3/4
  • symmetry= -Y+1/4,Z+3/4,X+1/4
  • symmetry= Y+3/4,Z+1/4,-X+1/4
  • symmetry= -Y,-X+1/2,Z
  • symmetry= Y+1/2,X+1/2,Z+1/2
  • symmetry= -Y+1/2,X,-Z
  • symmetry= Y,-X,-Z+1/2
  • symmetry= -X,-Z+1/2,Y
  • symmetry= X,-Z,-Y+1/2
  • symmetry= X+1/2,Z+1/2,Y+1/2
  • symmetry= -X+1/2,Z,-Y
  • symmetry= -Z,-Y+1/2,X
  • symmetry= -Z+1/2,Y,-X
  • symmetry= Z,-Y,-X+1/2
  • symmetry= Z+1/2,Y+1/2,X+1/2
  • symmetry= X,Y+1/2,Z+1/2
  • symmetry= -X,-Y,Z
  • symmetry= -X+1/2,Y,-Z+1/2
  • symmetry= X+1/2,-Y+1/2,-Z
  • symmetry= Z,X+1/2,Y+1/2
  • symmetry= Z+1/2,-X+1/2,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z+1/2,X,-Y+1/2
  • symmetry= Y,Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z,-X+1/2
  • symmetry= Y+1/2,-Z+1/2,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y+3/4,X+3/4,-Z+1/4
  • symmetry= -Y+1/4,-X+3/4,-Z+3/4
  • symmetry= Y+1/4,-X+1/4,Z+1/4
  • symmetry= -Y+3/4,X+1/4,Z+3/4
  • symmetry= X+3/4,Z+3/4,-Y+1/4
  • symmetry= -X+3/4,Z+1/4,Y+3/4
  • symmetry= -X+1/4,-Z+3/4,-Y+3/4
  • symmetry= X+1/4,-Z+1/4,Y+1/4
  • symmetry= Z+3/4,Y+3/4,-X+1/4
  • symmetry= Z+1/4,-Y+1/4,X+1/4
  • symmetry= -Z+3/4,Y+1/4,X+3/4
  • symmetry= -Z+1/4,-Y+3/4,-X+3/4
  • symmetry= -X+3/4,-Y+1/4,-Z+1/4
  • symmetry= X+3/4,Y+3/4,-Z+3/4
  • symmetry= X+1/4,-Y+3/4,Z+1/4
  • symmetry= -X+1/4,Y+1/4,Z+3/4
  • symmetry= -Z+3/4,-X+1/4,-Y+1/4
  • symmetry= -Z+1/4,X+1/4,Y+3/4
  • symmetry= Z+3/4,X+3/4,-Y+3/4
  • symmetry= Z+1/4,-X+3/4,Y+1/4
  • symmetry= -Y+3/4,-Z+1/4,-X+1/4
  • symmetry= Y+1/4,-Z+3/4,X+1/4
  • symmetry= -Y+1/4,Z+1/4,X+3/4
  • symmetry= Y+3/4,Z+3/4,-X+3/4
  • symmetry= -Y,-X,Z+1/2
  • symmetry= Y+1/2,X,Z
  • symmetry= -Y+1/2,X+1/2,-Z+1/2
  • symmetry= Y,-X+1/2,-Z
  • symmetry= -X,-Z,Y+1/2
  • symmetry= X,-Z+1/2,-Y
  • symmetry= X+1/2,Z,Y
  • symmetry= -X+1/2,Z+1/2,-Y+1/2
  • symmetry= -Z,-Y,X+1/2
  • symmetry= -Z+1/2,Y+1/2,-X+1/2
  • symmetry= Z,-Y+1/2,-X
  • symmetry= Z+1/2,Y,X
  • symmetry= X+1/2,Y,Z+1/2
  • symmetry= -X+1/2,-Y+1/2,Z
  • symmetry= -X,Y+1/2,-Z+1/2
  • symmetry= X,-Y,-Z
  • symmetry= Z+1/2,X,Y+1/2
  • symmetry= Z,-X,-Y
  • symmetry= -Z+1/2,-X+1/2,Y
  • symmetry= -Z,X+1/2,-Y+1/2
  • symmetry= Y+1/2,Z,X+1/2
  • symmetry= -Y,Z+1/2,-X+1/2
  • symmetry= Y,-Z,-X
  • symmetry= -Y+1/2,-Z+1/2,X
  • symmetry= Y+1/4,X+1/4,-Z+1/4
  • symmetry= -Y+3/4,-X+1/4,-Z+3/4
  • symmetry= Y+3/4,-X+3/4,Z+1/4
  • symmetry= -Y+1/4,X+3/4,Z+3/4
  • symmetry= X+1/4,Z+1/4,-Y+1/4
  • symmetry= -X+1/4,Z+3/4,Y+3/4
  • symmetry= -X+3/4,-Z+1/4,-Y+3/4
  • symmetry= X+3/4,-Z+3/4,Y+1/4
  • symmetry= Z+1/4,Y+1/4,-X+1/4
  • symmetry= Z+3/4,-Y+3/4,X+1/4
  • symmetry= -Z+1/4,Y+3/4,X+3/4
  • symmetry= -Z+3/4,-Y+1/4,-X+3/4
  • symmetry= -X+1/4,-Y+3/4,-Z+1/4
  • symmetry= X+1/4,Y+1/4,-Z+3/4
  • symmetry= X+3/4,-Y+1/4,Z+1/4
  • symmetry= -X+3/4,Y+3/4,Z+3/4
  • symmetry= -Z+1/4,-X+3/4,-Y+1/4
  • symmetry= -Z+3/4,X+3/4,Y+3/4
  • symmetry= Z+1/4,X+1/4,-Y+3/4
  • symmetry= Z+3/4,-X+1/4,Y+1/4
  • symmetry= -Y+1/4,-Z+3/4,-X+1/4
  • symmetry= Y+3/4,-Z+1/4,X+1/4
  • symmetry= -Y+3/4,Z+3/4,X+3/4
  • symmetry= Y+1/4,Z+1/4,-X+3/4
  • symmetry= -Y+1/2,-X+1/2,Z+1/2
  • symmetry= Y,X+1/2,Z
  • symmetry= -Y,X,-Z+1/2
  • symmetry= Y+1/2,-X,-Z
  • symmetry= -X+1/2,-Z+1/2,Y+1/2
  • symmetry= X+1/2,-Z,-Y
  • symmetry= X,Z+1/2,Y
  • symmetry= -X,Z,-Y+1/2
  • symmetry= -Z+1/2,-Y+1/2,X+1/2
  • symmetry= -Z,Y,-X+1/2
  • symmetry= Z+1/2,-Y,-X
  • symmetry= Z,Y+1/2,X
  • symmetry= X+1/2,Y+1/2,Z
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y+1/2,-Z+1/2
  • symmetry= Z+1/2,X+1/2,Y
  • symmetry= Z,-X+1/2,-Y+1/2
  • symmetry= -Z+1/2,-X,Y+1/2
  • symmetry= -Z,X,-Y
  • symmetry= Y+1/2,Z+1/2,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z+1/2,-X+1/2
  • symmetry= -Y+1/2,-Z,X+1/2
  • symmetry= Y+1/4,X+3/4,-Z+3/4
  • symmetry= -Y+3/4,-X+3/4,-Z+1/4
  • symmetry= Y+3/4,-X+1/4,Z+3/4
  • symmetry= -Y+1/4,X+1/4,Z+1/4
  • symmetry= X+1/4,Z+3/4,-Y+3/4
  • symmetry= -X+1/4,Z+1/4,Y+1/4
  • symmetry= -X+3/4,-Z+3/4,-Y+1/4
  • symmetry= X+3/4,-Z+1/4,Y+3/4
  • symmetry= Z+1/4,Y+3/4,-X+3/4
  • symmetry= Z+3/4,-Y+1/4,X+3/4
  • symmetry= -Z+1/4,Y+1/4,X+1/4
  • symmetry= -Z+3/4,-Y+3/4,-X+1/4
  • symmetry= -X+1/4,-Y+1/4,-Z+3/4
  • symmetry= X+1/4,Y+3/4,-Z+1/4
  • symmetry= X+3/4,-Y+3/4,Z+3/4
  • symmetry= -X+3/4,Y+1/4,Z+1/4
  • symmetry= -Z+1/4,-X+1/4,-Y+3/4
  • symmetry= -Z+3/4,X+1/4,Y+1/4
  • symmetry= Z+1/4,X+3/4,-Y+1/4
  • symmetry= Z+3/4,-X+3/4,Y+3/4
  • symmetry= -Y+1/4,-Z+1/4,-X+3/4
  • symmetry= Y+3/4,-Z+3/4,X+3/4
  • symmetry= -Y+3/4,Z+1/4,X+1/4
  • symmetry= Y+1/4,Z+3/4,-X+1/4
  • symmetry= -Y+1/2,-X,Z
  • symmetry= Y,X,Z+1/2
  • symmetry= -Y,X+1/2,-Z
  • symmetry= Y+1/2,-X+1/2,-Z+1/2
  • symmetry= -X+1/2,-Z,Y
  • symmetry= X+1/2,-Z+1/2,-Y+1/2
  • symmetry= X,Z,Y+1/2
  • symmetry= -X,Z+1/2,-Y
  • symmetry= -Z+1/2,-Y,X
  • symmetry= -Z,Y+1/2,-X
  • symmetry= Z+1/2,-Y+1/2,-X+1/2
  • symmetry= Z,Y,X+1/2
  • 229 IM-3M

  • Number of Symmetry Operators = 96
  • Space Group Name = IM-3m
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 229
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X,-Y,Z
  • symmetry= -X,Y,-Z
  • symmetry= X,-Y,-Z
  • symmetry= Z,X,Y
  • symmetry= Z,-X,-Y
  • symmetry= -Z,-X,Y
  • symmetry= -Z,X,-Y
  • symmetry= Y,Z,X
  • symmetry= -Y,Z,-X
  • symmetry= Y,-Z,-X
  • symmetry= -Y,-Z,X
  • symmetry= Y,X,-Z
  • symmetry= -Y,-X,-Z
  • symmetry= Y,-X,Z
  • symmetry= -Y,X,Z
  • symmetry= X,Z,-Y
  • symmetry= -X,Z,Y
  • symmetry= -X,-Z,-Y
  • symmetry= X,-Z,Y
  • symmetry= Z,Y,-X
  • symmetry= Z,-Y,X
  • symmetry= -Z,Y,X
  • symmetry= -Z,-Y,-X
  • symmetry= -X,-Y,-Z
  • symmetry= X,Y,-Z
  • symmetry= X,-Y,Z
  • symmetry= -X,Y,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z,X,Y
  • symmetry= Z,X,-Y
  • symmetry= Z,-X,Y
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z,X
  • symmetry= -Y,Z,X
  • symmetry= Y,Z,-X
  • symmetry= -Y,-X,Z
  • symmetry= Y,X,Z
  • symmetry= -Y,X,-Z
  • symmetry= Y,-X,-Z
  • symmetry= -X,-Z,Y
  • symmetry= X,-Z,-Y
  • symmetry= X,Z,Y
  • symmetry= -X,Z,-Y
  • symmetry= -Z,-Y,X
  • symmetry= -Z,Y,-X
  • symmetry= Z,-Y,-X
  • symmetry= Z,Y,X
  • symmetry= X+1/2,Y+1/2,Z+1/2
  • symmetry= -X+1/2,-Y+1/2,Z+1/2
  • symmetry= -X+1/2,Y+1/2,-Z+1/2
  • symmetry= X+1/2,-Y+1/2,-Z+1/2
  • symmetry= Z+1/2,X+1/2,Y+1/2
  • symmetry= Z+1/2,-X+1/2,-Y+1/2
  • symmetry= -Z+1/2,-X+1/2,Y+1/2
  • symmetry= -Z+1/2,X+1/2,-Y+1/2
  • symmetry= Y+1/2,Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z+1/2,-X+1/2
  • symmetry= Y+1/2,-Z+1/2,-X+1/2
  • symmetry= -Y+1/2,-Z+1/2,X+1/2
  • symmetry= Y+1/2,X+1/2,-Z+1/2
  • symmetry= -Y+1/2,-X+1/2,-Z+1/2
  • symmetry= Y+1/2,-X+1/2,Z+1/2
  • symmetry= -Y+1/2,X+1/2,Z+1/2
  • symmetry= X+1/2,Z+1/2,-Y+1/2
  • symmetry= -X+1/2,Z+1/2,Y+1/2
  • symmetry= -X+1/2,-Z+1/2,-Y+1/2
  • symmetry= X+1/2,-Z+1/2,Y+1/2
  • symmetry= Z+1/2,Y+1/2,-X+1/2
  • symmetry= Z+1/2,-Y+1/2,X+1/2
  • symmetry= -Z+1/2,Y+1/2,X+1/2
  • symmetry= -Z+1/2,-Y+1/2,-X+1/2
  • symmetry= -X+1/2,-Y+1/2,-Z+1/2
  • symmetry= X+1/2,Y+1/2,-Z+1/2
  • symmetry= X+1/2,-Y+1/2,Z+1/2
  • symmetry= -X+1/2,Y+1/2,Z+1/2
  • symmetry= -Z+1/2,-X+1/2,-Y+1/2
  • symmetry= -Z+1/2,X+1/2,Y+1/2
  • symmetry= Z+1/2,X+1/2,-Y+1/2
  • symmetry= Z+1/2,-X+1/2,Y+1/2
  • symmetry= -Y+1/2,-Z+1/2,-X+1/2
  • symmetry= Y+1/2,-Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z+1/2,X+1/2
  • symmetry= Y+1/2,Z+1/2,-X+1/2
  • symmetry= -Y+1/2,-X+1/2,Z+1/2
  • symmetry= Y+1/2,X+1/2,Z+1/2
  • symmetry= -Y+1/2,X+1/2,-Z+1/2
  • symmetry= Y+1/2,-X+1/2,-Z+1/2
  • symmetry= -X+1/2,-Z+1/2,Y+1/2
  • symmetry= X+1/2,-Z+1/2,-Y+1/2
  • symmetry= X+1/2,Z+1/2,Y+1/2
  • symmetry= -X+1/2,Z+1/2,-Y+1/2
  • symmetry= -Z+1/2,-Y+1/2,X+1/2
  • symmetry= -Z+1/2,Y+1/2,-X+1/2
  • symmetry= Z+1/2,-Y+1/2,-X+1/2
  • symmetry= Z+1/2,Y+1/2,X+1/2
  • 230 IA-3D

  • Number of Symmetry Operators = 96
  • Space Group Name = IA-3D
  • Crystal System = CUBIC
  • Laue Class = m-3m
  • Point Group = m-3m
  • Patterson Space Group # = 230
  • Lattice Type = F
  • symmetry= X,Y,Z
  • symmetry= -X+1/2,-Y,Z+1/2
  • symmetry= -X,Y+1/2,-Z+1/2
  • symmetry= X+1/2,-Y+1/2,-Z
  • symmetry= Z,X,Y
  • symmetry= Z+1/2,-X+1/2,-Y
  • symmetry= -Z+1/2,-X,Y+1/2
  • symmetry= -Z,X+1/2,-Y+1/2
  • symmetry= Y,Z,X
  • symmetry= -Y,Z+1/2,-X+1/2
  • symmetry= Y+1/2,-Z+1/2,-X
  • symmetry= -Y+1/2,-Z,X+1/2
  • symmetry= Y+3/4,X+1/4,-Z+1/4
  • symmetry= -Y+3/4,-X+3/4,-Z+3/4
  • symmetry= Y+1/4,-X+1/4,Z+3/4
  • symmetry= -Y+1/4,X+3/4,Z+1/4
  • symmetry= X+3/4,Z+1/4,-Y+1/4
  • symmetry= -X+1/4,Z+3/4,Y+1/4
  • symmetry= -X+3/4,-Z+3/4,-Y+3/4
  • symmetry= X+1/4,-Z+1/4,Y+3/4
  • symmetry= Z+3/4,Y+1/4,-X+1/4
  • symmetry= Z+1/4,-Y+1/4,X+3/4
  • symmetry= -Z+1/4,Y+3/4,X+1/4
  • symmetry= -Z+3/4,-Y+3/4,-X+3/4
  • symmetry= -X,-Y,-Z
  • symmetry= X+1/2,Y,-Z+1/2
  • symmetry= X,-Y+1/2,Z+1/2
  • symmetry= -X+1/2,Y+1/2,Z
  • symmetry= -Z,-X,-Y
  • symmetry= -Z+1/2,X+1/2,Y
  • symmetry= Z+1/2,X,-Y+1/2
  • symmetry= Z,-X+1/2,Y+1/2
  • symmetry= -Y,-Z,-X
  • symmetry= Y,-Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z+1/2,X
  • symmetry= Y+1/2,Z,-X+1/2
  • symmetry= -Y+1/4,-X+3/4,Z+3/4
  • symmetry= Y+1/4,X+1/4,Z+1/4
  • symmetry= -Y+3/4,X+3/4,-Z+1/4
  • symmetry= Y+3/4,-X+1/4,-Z+3/4
  • symmetry= -X+1/4,-Z+3/4,Y+3/4
  • symmetry= X+3/4,-Z+1/4,-Y+3/4
  • symmetry= X+1/4,Z+1/4,Y+1/4
  • symmetry= -X+3/4,Z+3/4,-Y+1/4
  • symmetry= -Z+1/4,-Y+3/4,X+3/4
  • symmetry= -Z+3/4,Y+3/4,-X+1/4
  • symmetry= Z+3/4,-Y+1/4,-X+3/4
  • symmetry= Z+1/4,Y+1/4,X+1/4
  • symmetry= X+1/2,Y+1/2,Z+1/2
  • symmetry= -X,-Y+1/2,Z
  • symmetry= -X+1/2,Y,-Z
  • symmetry= X,-Y,-Z+1/2
  • symmetry= Z+1/2,X+1/2,Y+1/2
  • symmetry= Z,-X,-Y+1/2
  • symmetry= -Z,-X+1/2,Y
  • symmetry= -Z+1/2,X,-Y
  • symmetry= Y+1/2,Z+1/2,X+1/2
  • symmetry= -Y+1/2,Z,-X
  • symmetry= Y,-Z,-X+1/2
  • symmetry= -Y,-Z+1/2,X
  • symmetry= Y+1/4,X+3/4,-Z+3/4
  • symmetry= -Y+1/4,-X+1/4,-Z+1/4
  • symmetry= Y+3/4,-X+3/4,Z+1/4
  • symmetry= -Y+3/4,X+1/4,Z+3/4
  • symmetry= X+1/4,Z+3/4,-Y+3/4
  • symmetry= -X+3/4,Z+1/4,Y+3/4
  • symmetry= -X+1/4,-Z+1/4,-Y+1/4
  • symmetry= X+3/4,-Z+3/4,Y+1/4
  • symmetry= Z+1/4,Y+3/4,-X+3/4
  • symmetry= Z+3/4,-Y+3/4,X+1/4
  • symmetry= -Z+3/4,Y+1/4,X+3/4
  • symmetry= -Z+1/4,-Y+1/4,-X+1/4
  • symmetry= -X+1/2,-Y+1/2,-Z+1/2
  • symmetry= X,Y+1/2,-Z
  • symmetry= X+1/2,-Y,Z
  • symmetry= -X,Y,Z+1/2
  • symmetry= -Z+1/2,-X+1/2,-Y+1/2
  • symmetry= -Z,X,Y+1/2
  • symmetry= Z,X+1/2,-Y
  • symmetry= Z+1/2,-X,Y
  • symmetry= -Y+1/2,-Z+1/2,-X+1/2
  • symmetry= Y+1/2,-Z,X
  • symmetry= -Y,Z,X+1/2
  • symmetry= Y,Z+1/2,-X
  • symmetry= -Y+3/4,-X+1/4,Z+1/4
  • symmetry= Y+3/4,X+3/4,Z+3/4
  • symmetry= -Y+1/4,X+1/4,-Z+3/4
  • symmetry= Y+1/4,-X+3/4,-Z+1/4
  • symmetry= -X+3/4,-Z+1/4,Y+1/4
  • symmetry= X+1/4,-Z+3/4,-Y+1/4
  • symmetry= X+3/4,Z+3/4,Y+3/4
  • symmetry= -X+1/4,Z+1/4,-Y+3/4
  • symmetry= -Z+3/4,-Y+1/4,X+1/4
  • symmetry= -Z+1/4,Y+1/4,-X+3/4
  • symmetry= Z+1/4,-Y+3/4,-X+1/4
  • symmetry= Z+3/4,Y+3/4,X+3/4