Difference between revisions of "Molten Salt Material"

From wiki
Jump to: navigation, search
(=)
(Background)
Line 1: Line 1:
 
=== Background ===
 
=== Background ===
 
Molten salts are promising thermal energy storage(TES)materials. Thermophysical properties of molten halide salts closely related to device and system design should be determined accurately covering the entire operating temperature range. Although multi-components salts are actually used, structural and thermophysical properties of pure salts are essential for complementing the basic thermodynamic data and developing new type halide materials. Moreover, thermophysical properties of multi-components salts can be roughly estimated without any experiments by additive principle7 and other expirical methods8 where the corresponding properties of individual components are needed in case someone has no experimental conditions. Furthermore, in order to elucidate evolution law of thermophysical properties of molten halide salts with temperature, microstructures should be either measured or simulated. Unfortunately, to our best knowledge, some thermophysical properties are hard to measure by experiment so far. As an alternative, molecular simulations have been proposed and used to predict thermal and transport properties over the entire operating temperature range.
 
Molten salts are promising thermal energy storage(TES)materials. Thermophysical properties of molten halide salts closely related to device and system design should be determined accurately covering the entire operating temperature range. Although multi-components salts are actually used, structural and thermophysical properties of pure salts are essential for complementing the basic thermodynamic data and developing new type halide materials. Moreover, thermophysical properties of multi-components salts can be roughly estimated without any experiments by additive principle7 and other expirical methods8 where the corresponding properties of individual components are needed in case someone has no experimental conditions. Furthermore, in order to elucidate evolution law of thermophysical properties of molten halide salts with temperature, microstructures should be either measured or simulated. Unfortunately, to our best knowledge, some thermophysical properties are hard to measure by experiment so far. As an alternative, molecular simulations have been proposed and used to predict thermal and transport properties over the entire operating temperature range.
 +
 +
=== Results===

Revision as of 02:06, 10 July 2020

Background

Molten salts are promising thermal energy storage(TES)materials. Thermophysical properties of molten halide salts closely related to device and system design should be determined accurately covering the entire operating temperature range. Although multi-components salts are actually used, structural and thermophysical properties of pure salts are essential for complementing the basic thermodynamic data and developing new type halide materials. Moreover, thermophysical properties of multi-components salts can be roughly estimated without any experiments by additive principle7 and other expirical methods8 where the corresponding properties of individual components are needed in case someone has no experimental conditions. Furthermore, in order to elucidate evolution law of thermophysical properties of molten halide salts with temperature, microstructures should be either measured or simulated. Unfortunately, to our best knowledge, some thermophysical properties are hard to measure by experiment so far. As an alternative, molecular simulations have been proposed and used to predict thermal and transport properties over the entire operating temperature range.

Results